2026/01/27 00:56 1/6 Cladni Light Installation Art (CLIA)

Cladni Light Installation Art (CLIA)

In unserem Projekt werden Cladni'sche Klangfiguren digital simuliert und in Form einer interaktiven
Light-Audio-Installation prasentiert. Dies soll eine einfache und spaRige Methode sein die Physik in
ihrer Asthetik Menschen naher zu bringen, ohne diese mit komplexen Formeln und/oder Ahnlichen zu
uberfordern. Im fertigen Endprodukt soll eine einfache Tastatur den Besuchern erlauben bestimmte
Tone abzuspielen und simultan das simulierte Muster einer digitalen Metallplatte auf einer Leinwand
projiziert zu sehen. Durch diese klnstlerische, audio-visuelle Licht-Installation wird versucht bei den
Besuchern das Interesse an der Physik zu wecken.

Physikalische Grundlagen

Ernst Florens Friedrich Chladni war ein deutscher Physiker und Astronom. Er beschrieb 1787 die nach
ihm benannten Klangfiguren. Sie waren einer der ersten Ansatze Ton visuell sichtbar zu machen. Im
Folgenden Abschnitt werden erstmal die physikalischen Grundlagen physischer Chladni-Figuren
erklart. Darauf folgt die notwendige Theorie und Annahmen die hier gemacht worden sind, um die
Figuren Digital darstellen zu kdnnen.

Hinweis: Dieser Text versucht das Gleichgewicht zwischen wissenschaftlicher Genauigkeit und
Verstandlichkeit fur Menschen die nicht vom Fach sind zu wahren. Um das Thema besser verstehen
zu konnen empfehlen wir die im text verlinkten Quellen und YoutTube Videos anzuschauen. Worter
die in Bold geschrieben sind werden im Nachhinein weiter erldutert. Wenn du, geehrte/r Leeser*in
diese nicht sofort verstehst so keine Angst. Lesen Dieses Textes erfolgt auf eigene Gefahr.

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/


http://www.youtube-nocookie.com/embed/CR_XL192wXw?
http://www.youtube-nocookie.com/embed/CR_XL192wXw?

Last update: 2023/10/04 14:08 clia http://www.labprepare.tu-berlin.de/wiki/doku.php?id=clia&rev=1696421306

Grundprinzip?

Die Chladni-Klangfiguren entstehen wenn Oberflachen durch mechanische Anregung zum
Schwingen/Vibrieren (umgangsprachlich wackeln) gebracht werden. Fir Chladni-Figuren werden meist
Metallplatten verwendet. Vibration der Platten bei bestimmten Frequenzen (genannt
Eigenfrequenzen) erzeugen sogenannte stehende Wellen bei denen auf bestimmten Linien die
Platte gar nicht schwingt. Dies lasst sich durch das streuen von Salz, Sand (0.3.) visualisieren welches
sich an den nicht schwingenden stellen sammelt. Die durch das Salz veranschaulichten Linien
ergeben Muster welche von der Schwingfrequenz, den Dimensionen und den Materialeigenschaften
der Platte abhanent. Siehe als Beispiel das folgende Bild

=]

Stehende Wellen Diese Schwingungen sind erstmal nichts anderes als transversale Schallwellen,
welche durch sich durch den Kérper bewegen. Die Geschwindigkeit, mit der sich diese durch den
Korper bewegen darf nicht mit der Schallgeschwindigkeit der logitudinalen

Mathe flr Wer's wissen will

Der Plan

Simulation der Klangfiguren

Da wir die chladnischen Klangfiguren digital samt Ubergéngen darstellen wollen, ist es notwendig ein
Programm zu schreiben, dass dies tut. Unsere Anforderung an das Programm war, dass die
Ubergange zwischen den verschiedenen Figuren so nah an der Realitdt wie méglich sind. Aus diesem
Grund haben wir uns fur eine Partikelsimulation entschieden, wo jeder Partikel sozusagen einem
Sandkorn entspricht. Die einzelnen Partikel haben keine Kollisionen untereinander, da dies das
Programm sehr viel langsamer machen wdrde.

Mathematische Grundlagen der Simulation

Die Differenzialgleichungen, um eine Chladni-Platte korrekt zu simulieren, gehéren zwar mittlerweile

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 00:56


http://www.youtube-nocookie.com/embed/wvJAgrUBF4w?
http://www.youtube-nocookie.com/embed/wvJAgrUBF4w?
http://www.labprepare.tu-berlin.de/wiki/lib/exe/fetch.php?tok=b71286&media=https%3A%2F%2Fupload.wikimedia.org%2Fwikipedia%2Fcommons%2Fthumb%2F4%2F43%2FChladni_plate_10.jpg%2F640px-Chladni_plate_10.jpg

2026/01/27 00:56 3/6 Cladni Light Installation Art (CLIA)

zum Allgemeingut von Wikipedia *, sind jedoch immer noch recht kompliziert und wiirden den
Rahmen dieses Teil des Projektes sprengen. Glicklicherweise gibt es viele Menschen, die sich mit
diesem physikalischen Expermiment und den zugehdrigen Differenzialgleichungen befasst haben.
Einer dieser Menschen hat netterweise die Losungen dieser Differenzialgleichungen fur den Fall, dass
die Platte unendlich diinn ist, auf einer Webseite gepostet *. Im Nachfolgenden verwenden wir die
Losung, die dort zur Verfugung gestellt wird. Der Sand einer Chladni-Platte sammelt sich in Bereichen,
wo die Platte nicht schwingt. Diese Bereiche werden durch die Nullstellen der Funktion s(x,y) = a sin(m
n x) sin(mmy) + b sin(mm x) sin(mtny).

Nun sollen sich alle Partikel irgendwie zu denn Nullstellen bewegen. Das ist das gleiche wie eine
Nullstellenberechnung mit beliebigen Startpunkt. Hierflr wirde sich zum Beispiel das Newton-
Verfahren anbieten. Leider wurden die einzelnen Partikel dann aber recht wild springen und
wahrscheinlich nicht zur nachstgelegenen Nullstelle konvergieren. Ein besserer Kandidat ist das
Gradientenverfahren, da wir dort die Schrittweite sehr einfach kontorllieren kdnnen. Das
Gradientenverfahren findet aber ein Minimum. Die Minima unserer Funktion sind jedoch nicht die
Nullstellen. Das kdnnen wir aber durch quadrierung der Funktion ganz schnell andern.

Der nachste Schritt ist nun also den Gradienten der Funktion s' = s~2 zu bestimmen. Wolfram-Alpha
ist hierbei eine groRe Hilfe und gibt uns direkt das gewiinschte Ergebnis aus.

Betrachten wir nun einen Partikel, so wird dieser an einem zufalligen Punkt starten. Berechnen wir
dann den Gradienten an diesem Punkt, so erhalten wir die Richtung des groRten Anstiegs der
Funktion. Ziehen wir diesen Vektor nun (mit einem gut gewahlten Skalierungsfaktor) von der
aktuellen Position ab. Es ist wohl bekannt, dass wir mit diesem Verfahren (mit richtig gewahlten
Parametern) nach und nach an einem Minimum und in unserem Fall an einer Nullstelle angelangen.
Unser Ziel ist es nun, dieses simple Verfahren fur viele Partikel gleichzeitig auszufihren, um die
Ubergange der Muster zu simulieren.

Die Simulation

Mithilfe von Angaben eines Aufgabenblattes * des Klett-Verlags kénnen wir berechnen, dass man in
einem studierendeniblichen Shotglas (4 cl) bereits ungefahr 100 000 Sandkdrner unterbringen kann.
Wenn man diese Menge an Sankdrnern nun auf eine grofSe (1 x 1 m) Chladni-Platte verteilt, so wird
man wahrscheinlich schon schone Muster erkennen konnen. Der Unterschied zur Simulation ist hier
jedoch (unter vielen anderen), dass Sandkoérner in der echten Welt kollidieren und somit nicht am
selben Ort sein kénnen. Um also dennoch schéne Muster in der Simulation zu erhlaten, missen wir
deutlich mehr Sandkéner simulieren. Wir haben uns fur 1024 x 1024 entschieden (also ca 10
studierendenlbliche Shotglaser).

Die Frage ist nun, wie man ca 1 000 000 Partikel gleichzeitig in Echtzeit simuliert. Auf einer CPU ware
dies wohl schwierig, da diese zwar sehr komplizierte Operationen ausflihren kann, dafir aber nur
verhaltnismalig wenige dieser. Die Losung hierbei ist GPU-Computing (also das Rechnen auf einer
Grafikkarte). Grafikkarten sind dafur optimiert, sehr viele einfache Operation parallel auszufthren -
also genau das, was wir fur dieses Projekt brauchen. Tatsachlich hat es auch einen Namen, die
Grafikkarte zur Berechnung von Dingen zu verwenden, die nichts mit der Darstellung auf einem
Bildschirm zu tun haben: GPGPU (General Purpose GPU).

Versuch 1 - GPGPU durch NVIDIA Warp

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/



Last update: 2023/10/04 14:08 clia http://www.labprepare.tu-berlin.de/wiki/doku.php?id=clia&rev=1696421306

Zunachst mussten wir ausprobieren, ob die ganze Theorie Uberhaupt funktioniert und ob das Projekt
realistisch ist. Dafur eignet sich eine einfach Python-Implementierung sehr gut. Glucklicherweise stellt
NVIDIA eine Library ¥ bereit, mit der es sehr einfach ist iber Python auf die Grafikkarte zuzugreifen.
Ein erster Test hat gezeigt, das unsere Ansatze korrekt sind und gut funktionieren. Die Darstellung
der Partikel hat an dieser Stelle noch matplotlib GUbernommen, wobei dies ein groflen Bottleneck
darstellte, das diese Library nicht fir diesen Anwendungsfall gedacht ist.

=120

=100 -035 —-050 =023 Q02 GQ2E Q32 Q7% 10D

Die Zeit, um alle Partikel einen Schritt weiter zu setzen war sehr gering (< 0.1 ms). Leider konnte
matplotlib da nicht mithalten und hat fUr das updaten der daten ca 10 ms und flr die Darstellung
dessen bedeutend langer gebraucht, sodass eine flissige Echtzeitsimulation mit dieser Methode nicht
maoglich war.

Versuch 2 - Shader

Shader sind eine wunderbare Maglichkeit, auf die GPU zuzugreifen. Genauer haben wir uns hier mit
einem Fragment-Shader beschaftigt. Mit so einem Shader kann man angeben, was fur jeden Pixel auf
dem Bildschirm dargestellt wird. Hierbei hat man aber keinen Zugriff auf die Berechnung der anderen
Pixel, da alle parallel ausgefuhrt werden konnen sollen und Mutual Exclusion diesen Prozess deutlich
verlangsamen wiirde. Wir haben also einen Shader ® geschreiben, der eine Chladni-Platte mit Sand
simuliert. Die Art der Simulation hat jedoch einen groRen Nachteil. Wenn mehrere Partikel in einer
Iteration zum gleichen Pixel wollen, so werden alle bis auf einen ausgeldscht. Dies fhrt dazu, dass
man immer neue Partikel erschaffen muss, was die Simulation im Endeffekt etwas unschoéner
erscheinen lasst. Zudem wird die Simulation nicht quadratisch dargestellt, obwohl die Platte in
Theorie quadratisch ist.

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 00:56


http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=animation.gif
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=animation.gif
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=animation.gif
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=www.shadertoy.com_view_cssfrr.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=www.shadertoy.com_view_cssfrr.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=www.shadertoy.com_view_cssfrr.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=www.shadertoy.com_view_cssfrr.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=www.shadertoy.com_view_cssfrr.png

2026/01/27 00:56 5/6 Cladni Light Installation Art (CLIA)

Das Endprodukt dieses Exkurses hat jedoch einen Lichtblick gegeben. Viele Partikel konnten
problemlos in Echtzeit und mit hoher Framerate simuliert werden. Das Problem war nun, dass wir
MIDI-Keyboard Inputs einbinden wollten. An sich ist es kein Problem, die Variablen des Shaders zur
Laufzeit von AuRen zu verandern, leider biete die Seite Sahdertoy keine gute Maglichkeit flr Keyboard
oder MIDI-Inputs. Dies fuhre dazu, dass wir uns mit WebGL befasst haben nach dem Motto: ,Wenn
Sahdertoy im Browser lauft, muss man es ja auch irgendwie selbst schaffen, was im Browser laufen zu
lassen.”

Versuch 3 - Das WebGL Abenteuer

Es gibt Uberraschend viele Menschen, die auf die Idee kommen, sich in lhrer Freizeit mit WebGL zu
beschéaftigen. Das fiihrt dazu, dass sehr gute Tutorial Seiten entstehen, wie WebGL2 Fundamentals °.
WebGL2 ist deutlich machtiger als in diesem Projekt benétigt, aber auch die einfachste Maglichkeit,
lokal einen Shader gut zum laufen zu bringen. Eigentlich war der Plan, den Shader aus Versuch 2
irgendwie lokal auszuflhren und fertig zu sein. Jedoch gibt es auf der genannten Tutorial-Seite ein
Beispiel fir GPGPU Partikel ”, als kénne der Autor unsere Gedanken lesen. Mit etwas Fantasie war das
Projekt nun also schon fertig. Nach ein paar Stunden Copy-Pasten, googlen und sich in WebGL2
einlesen, hatten wir eine laufende Partikelsimulation, fur die Sandkorner auf einer Chladni-Platte,
wobei sich die einzelnen Partikel nicht gegenseitig ausgeldscht haben.

Tatsachlich hatten wir alles zunachst in WebGL implementiert (genauer WebGL1). Jedoch ist uns
dann, als wir fast fertig waren, aufgefallen, dass WebGL2 deutlich bessere Features bietet. Zum
Beispiel ist man bei der Array-Groe nicht gebunden durch die GroBen von Texturen. Des Weiteren ist
es moglich Bilder als Texturen zu verwenden, die als PixelmaRe keine Zweierpotenzen sind. Auch ist
unser Problem in WebGL2 etwas effizienter berechnenbar, da man bestimmte Features bei Bedarf ein-
und ausschalten kann. Wir ersparen dem Leser hier nun weitere Details und verweisen noch einmal
auf die oben genannte Turtorial-Seite und prasentieren stattdessen ein fast konvergiertes Chladni-
Muster mit Venedig als Hintergrundbild.

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/


http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=clia&media=localhost_5500_third_try_gpgpu2.html.png

Last update: 2023/10/04 14:08 clia http://www.labprepare.tu-berlin.de/wiki/doku.php?id=clia&rev=1696421306

Da die Implementierung nun in JavaScript ist, konnten wir auch recht einfach ein paar Spielereien
einbauen, die in der nachsten Sektion beschrieben werden.

1)

Chladnische Klanfigur https://de.wikipedia.org/wiki/Chladnische_Klangfigur#Mathematisches_Modell

2)

Creating Digital Chladni Patterns https://thelig.ht/chladni/

3)

Wie viel ist viel? https://www2.klett.de/sixcms/media.php/229/700371_0101.pdf

4)

NVIDIA Warp - Preview Release https://developer.nvidia.com/warp-python

5)

Chladni-Shader https://www.shadertoy.com/view/cssfRr
6)

WebGL2 Fundamentals https://webgl2fundamentals.org/

7)

GPGPU Partikel https://webgl2fundamentals.org/webgl/webgl-gpgpu-particles-transformfeedback.html

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link: ko
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=clia&rev=1696421306 =3

Last update: 2023/10/04 14:08

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 00:56


https://de.wikipedia.org/wiki/Chladnische_Klangfigur#Mathematisches_Modell
https://thelig.ht/chladni/
https://www2.klett.de/sixcms/media.php/229/700371_0101.pdf
https://developer.nvidia.com/warp-python
https://www.shadertoy.com/view/cssfRr
https://webgl2fundamentals.org/
https://webgl2fundamentals.org/webgl/webgl-gpgpu-particles-transformfeedback.html
http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=clia&rev=1696421306

	Cladni Light Installation Art (CLIA)
	Physikalische Grundlagen
	Grundprinzip?

	Der Plan
	Simulation der Klangfiguren
	Mathematische Grundlagen der Simulation
	Die Simulation
	Versuch 1 - GPGPU durch NVIDIA Warp
	Versuch 2 - Shader
	Versuch 3 - Das WebGL Abenteuer




