2025/10/28 17:31 1/3 MYCELIUM CONSTRUCT

Einleitung

Im Jahr 2021 wurden 37% der globalen Emissionen durch den Bausektor verursacht, dies geht aus Daten des UNEP hervor. Allein 9% werden nur durch Baumaterialien ausgestoßen. Der Bedarf an nachhaltigen Lösungen steigt. Hier kommt der Pilz ins Spiel, der pflanzenbasierte Rohstoffe mit seiner fadenförmigen Struktur, dem Myzel verbindet und durch die Umwandlung von Lignin in ein festes Material verarbeitet. Um die zukünftigen Herausforderungen der Bauindustrie zu bewältigen verspricht Myzel eine vielversprechende Alternative zu Beton zu sein. Um mehr Vertrauen in einen pflanzenbasierten Baustoff der Zukunft gewinnen haben wir drei verschiedene Austellungsobjekte entworfen, die Myzel für den Betrachter greifbarer macht.

Ausstellungsobjekte

Möbius meets Mycelium: In der Mathematik beschreibt ein Möbiusband eine "nicht-orientierbare" Mannigfaltigkeit, also eine Fläche, die nur eine Kante und eine Seite hat. Anschaulich betrachtet bedeutet das, dass wenn man mit dem Finger am Band entlangfährt, dabei ohne den Rand zu überschreiten immer wieder zum Ausgangspunkt gelangt. Mit diesem zirkulären Prinzip spielt das Mycelium Möbiusstrip, indem es Mycelium als wiederverwendbare Alternative zu herkömmlichen Baumaterialien vorstellt.

Die Form des Möbiusbands wird durch Bewehrungsstahl vorgegeben, das im Bauwesen der Verstärkung von Stahlbetonbauteilen dient. Anstelle es mit Beton zu vergießen wurden hier in immer größer werdenden Abständen Kegel aus Myzel entlang des Stahls angebracht. Über mehrere Wochen hinweg verwächst das Biomaterial mit dem Stahl und sorgt dafür, dass das Möbiusband in seiner Form gehalten wird.

Rethink Construction: In der griechischen Architektur dient das Kapitell im Allgemeinen als Verbindungselement zwischen der Säule und dem sogenannten Bogenfuß. Statisch gesehen übernimmt das Kapitell die Funktion der Lastenverteilung. Diese Idee von Myzel als Verbundwerkstoff greift das Mycelium Kapitell auf und regt zum Nachdenken an. Als vielversprechender Träger der Zukunft greift das Mycelium Kapitell diese Idee des Verbingungselements aufdar, um ein klimafreundliches und nachhaltiges Bausystem zu gestalten.

Als Verbingungselement von biobasierten Materieln greift das Mycelium Kaptiell diese Idee auf und regt als vielversprechender Träger der Zukunft zum Nachdenken an.

,Le champignon bleu': Bei der Gestaltung einer nachhaltigen Zukunft stellt sich nicht nur die Frage der Effizienz eines Baumaterials, sondern auch die des Designs. Mit der Umstellung auf ein neues Material, kommt auch ein neuer Sinn für Ästhetik. Angelehnt an Yves Klein, der mit seinen blauen Monochromen das "Undefinierbare im Raum' zu fassen versuchte, erkundet "Le champignon bleu' die organischen Strukturen des Myceliums.

Kommunikation

Art der Kommunikation/ Präsentationsform

Das Projekt wird am 15.04 im MotionLAB vorgestellt.

- Die Skulptur wird beleuchtet. Auf Texttafeln stehen interessante Informationen.
- Zielgruppen
- Zivilbevölkerung, Architekten und Politiker*innen
- Da nachhaltiges Bauen uns alle betrifft, wollen wir bei einer breiten Masse das Vertrauen in biobasierte Baumaterialien wecken.
- Kommunikationsziel/Kernaussagen
- Wir wollen Vertrauen und Begeisterung der Zielgruppe wecken.

Theorie

Wissenschaftlicher Hintergrund Der Zunderschwamm ist ein mehrjähriger Parasit, der den Baumstamm zersetzt (nekrotroph). Dabei sind verschiedene Baumarten Wirte. Der Fruchtkörper hat eine variierende Form und Farbe.

Die Hyphen des Zunderschwamms dringen durch die Rinde in den Stamm der Wirte ein. Nach dem Tod des Wirtsbaums wird der Pilz zum Zersetzter Zersetzungsvorgang: Pilz kann Nährstoffe wie Lignin, Cellulose und Hemicellulosen als Nährstoffe nutzen. Pflanzliche Biomasse wird in Pilzliche Biomasse umgewandelt. Übrig bleibt ein weich gewordenes, meist feuchtes Holz, (Weißfäule). Dieses Holz ist Nahrungsgrundlage und Lebensraum für andere Lebewesen.

Bauanleitung

- Materialliste
- Findet sich in dem Buch:https://verlag.tu-berlin.de/en/produkt/978-3-98781-001-5/ Engage with the Fungi von Vera Meyer
- Außerdem gibt es hier noch ein gutes Video: https://www.youtube.com/watch?v=tgtHN3ZC6xY

Hier gibt es auch Anleitungen zum Herunterladen

http://www.top-ev.de/about/lab/mind-the-fungi/

2025/10/28 17:31 3/3 MYCELIUM CONSTRUCT

Fazit

- Erkenntnisse & Ausblick
- Quellen

Jones, M., Gandia, A., John, S. et al. Leather-like material biofabrication using fungi. Nat Sustain 4, 9–16 (2021). https://doi.org/10.1038/s41893-020-00606-1

Jones, Mitchell; Gandia, Antoni; John, Sabu; Bismarck, Alexander (2020). Leather-like material biofabrication using fungi. Nature Sustainability, (), -. doi:10.1038/s41893-020-00606-1

Vera Meyer, Sven Pfeiffer (2022), Engage with Fungi, Berlin University Publishing, DOI 10.14279/depositonce-10350

WWF Deutschland (Klimaschutz in der Beton- und Zementindustrie, 2019), EU-Kommission, Dittmer/Geraets/Schwipps (Die Klimabilanz Berliner U-Bahn- und Straßenbahnplanungen, 2020)

From:

http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link:

http://www.labprepare.tu-berlin.de/wiki/doku.php?id=myzel_construct&rev=1685039337

Last update: 2023/05/25 20:28

