2026/01/27 08:19 1/5 Roboterlabyrinth

Einleitung

Wie kann man bestimmte Daten, Dateien oder auch Wege innerhalb eines Systems oder einer Karte
finden? Die komplexen Arbeitsweisen dieser Algorithmen wurden Uber Jahre ausgiebig von
Mathematikern, Informatikern und Theoretikern auf Basis von mathematischen Grundlagen
ausgearbeitet, verfeinert oder neu konzipiert.

Fur die meisten User sind heutzutage dennoch die Such- und Findungskonzepte der Informatik
heutzutage nicht verstandlich genug. Zwar nutzen Sie nahezu taglich diese Konzepte, entweder direkt
in der Form von Navigationsgeraten oder indirekt durch nutzen von Paketdienstleistern.

Im Rahmen des Moduls “lab:prepare” soll das Projekt Robo-Lab die Funktionsweise von verschiedenen
und grundlegenden Suchalgorithmen wie A* oder Dijkstra dargestellt und fur die nicht-technische
Zielgruppe verstandlich visualisiert werden.

Daflr soll der von Anki hergestellte Cozmo-Roboter die unterschiedlichen Algorithmen implementiert
bekommen, um so eigenstandig auf einer simplifizierten Vektorkarte der Technischen Universitat
Berlin den kurzesten Weg zwischen zwei Punkten A und B zu finden. Hierbei sollen die Sensoren und
die Kamera des handflachen grollen Roboters helfen, sich auf der erstellten Karte zu orientieren und
Zu navigieren.

FUr die Zielgruppe sollen mehrere Optionen zum aktiven Arbeiten maéglich sein: Angeben, was die
Start- und die Zielpunkte sind Evtl. Auswahl des zu benutzenden Algorithmus oder Erstellen eigener
Wettkampf-Modus: zwei Cozmo, die auf Basis von verschiedenen Algorithmen arbeiten, laufen
gegeneinander um die Wette

Somit wollen wir vielerlei Moglichkeiten schaffen, diese Konzepte mit SpaR und Leichtigkeit fur jedes
Alter anschaulich und interaktiv darzustellen.

Theorie

Viele Probleme der Graphentheorie kdnnen mithilfe von Suchalgorithmen effizient geldst werden.
Beispiele fur diese Probleme sind das Problem des Handlungsreisenden, die Berechnung kurzester
Pfade und die Konstruktion eines minimalen Spannbaums. Fur unser Projekt werden solche
Suchalgorithmen mittels eines fahrenden Roboters veranschaulicht. Auf einer Karte kann die Effizienz
verschiedener Algorithmen auf diese Weise visuell verglichen werden. Die entsprechenden
Algorithmen sind zum Beispiel Bellman-Ford Algorithmus, Dijkstras Algorithmus oder A* Algorithmus,
die als Erweiterungen der Algorithmen fur die Suche in Baumen gesehen werden kénnen. Einfacher zu
implementierende Algorithmen umfassen dabei beispielsweise die bekannte Tiefen- und
Breitensuche.

Zusatzlich muss das Kamerabild so verarbeitet werden, sodass die schwarze linie eindeutig
identifiziert werden kann.

Bauplan Da es sich hierbei um einen fertig gebauten Roboter handelt, der im Handel kauflich zu
erwerben ist, kdnnen wir keinen eigenen Bauplan vorzeigen. Weitere Infos zum Roboter sind auf der
eigenen Website unter https://www.digitaldreamlabs.com/ zu finden.

Zu der SW Entwicklung haben wir uns die Dokumentation und das reichlich vorhandene
Onlinematerial (Tutorials, Git-Repos etc.) angeschaut.

Material

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://www.digitaldreamlabs.com/

Last update:

2021/11/07 16:02 ss21:roboterlabyrinth http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636297336

- Cozmo

- Handy mit Cozmo App

- Karte

Aufbau

In dem Bild ist der Cozmo zu sehen, wie er exemplarisch einer Linie folgen soll.

I[cozmo _linie_karte](uploads/edc432a0c545c43cb22blbelc9ae507b/cozmo_linie_karte.jpg)

Im spateren Verlauf des Projektes soll es sich dann nicht nur um eine Linie handeln, sondern um ein
verzweigtes Netz von Wegen gedruckt auf einer Karte. Hierbei stellen wir uns eine Art von
Vektorkarte vor, die dieses Netz von Wegen aufzeigen soll. Diese kann ausgedruckt werden oder
mittels durchsichtiger Folie variabel gestaltet werden. Es ist ein Beispiel fir eine Karte der Umgebung
der TU gezeigt. Abhangig von den Fahigkeiten des Cozmo werden Farbe, Glattung, Winkel und Breite
der Linien angepasst.

I[example-card-vektor](uploads/66b47d3c3b4c79f41159dccf224a077d/example-card-vektor.png)
Start Anleitung:

- Handy mit dem PC verbinden - Cozmo anschalten und mit dem WLAN des Cozmos verbinden - App
starten und auf verbinden dricken - warten bis Cozmo verbunden - In den einstellungen der App
(oben rechts) muss die SDK eingeschaltet werden - Python Programm starten mittels

./linefollow.py

Zwischenstand

Das aktuelle Problem besteht darin, Cozmo eine Linie folgen zu lassen. Der Ansatz ist das Nutzen
eines bereits erhaltlichen Scriptes (line_follower.py) und dieses mit eigenen Erweiterungen auf dem
Cozmo zu implementieren. Der nachste Schritt ist dann, die Suchalgortihmen und den line_follower so
zu verbinden, dass der Cozmo die Linien abfahrt, dabei die Wege mappt und anschlieBend den
schnellsten Weg berechnet. Hierbei sollen die Algorithmen eigenstandig implementiert werden, aber
uber eine Schnittstelle mit line_follower verbunden werden konnen. Probleme bestehen darin, die
Skripte auf den Cozmo zu Ubertragen und korrekt auszufthren.

Verbesserungen flr Version (nach 09.Juli.2021)

Es besteht die mdglichkeit eine direkte verbindung Gber den PC, ohne die mobile App, mit dem Cozmo
aufzubauen. Dies ist ein open Source Projekt (PyCozmo) von privaten Entwicklern und bietet fast die
gleichen funktionen, wie die Cozmo SDK.

Digitalisierung

Da eine Fertigstellung nicht mehr zu realisieren war, wurde der Ansatz verfolgt, die Algorithmen
virtuell darzustellen:

main.py:

import pygame,sys,node

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 08:19

2026/01/27 08:19 3/5 Roboterlabyrinth

from pygame.locals import *
import pygamemenu

pygame.init()

disp=pygame.display.set mode"

items = [,hello”, ,world”, ,thing”, ,other thing“]
nodelist = node.grow(64,64)

pixel = pygame.Surface®

pixel.fill”

for i in nodelist:

disp.blit(pixel, (i.Position[0]*10,i.Position[1]*10))
choice = 0

while True:

pygame.time.delay(100)

pygame.display.update()

for event in pygame.event.get():

if event.type==QUIT:

pygame.quit()

sys.exit()

node.py:

from random import randint as rand

class Node:

def init(self, position):

self.Position = position

self.Neighbours = [None, None, None, None]

#0

#3 1

2

def eq(self,other):

return self.Position == other.Position

def repr(self):

return str(self.Position[0])+', '+str(self.Position)
def grow(x,y):

nodelist=[]

Start node = Node”

nodelist.append(Start node)

cur = Start node

is valid = lambda a,b: (a<x and b<y and a>=0 and b>=0)
i=20

while i < (x*y2):#do things until maze if mazy enough
cur = nodelist[rand(0, len(nodelist)-1)]#i know randchoice is a thing
r = rand(0,3)

nposx, nposy=cposx,cposy = cur.Position

if r == 0: nposy += -1

if r == 2: nposy += +1

if r == 1: nposx += +1

if r == 3: nposx += -1

1f not is valid(nposx,nposy):

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Last update:

2021/11/07 16:02 ss21:roboterlabyrinth http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636297336

continue

new = Node”

1f new in nodelist:

continue

Es werdeb 4 neue Knoten erstellt, die spater wieder geldscht werden. Eine
Hashmap ware hier effizienter.

getnode = lambda a,b : nodelist[nodelist.index(Node®)]
otherlist=[]

try:
otherlist.append(getnode(nposx,nposy-1))
except ValueError:pass

try:
otherlist.append(getnode(nposx+1,nposy))
except ValueError:pass

try:
otherlist.append(getnode(nposx,nposy+1))
except ValueError:pass

try:
otherlist.append(getnode(nposx-1,nposy))
except ValueError:pass

1f len(otherlist)!=1:

continue

other=otherlist[0]

i1f other.Position[0@]-1 == nposx:
new.Neighbours[1]=other
other.Neighbours[3]=new

if other.Position[Q]+1 == nposx:
new.Neighbours[3]=0ther
other.Neighbours[1]=new

1f other.Position[1]-1 == nposy:
new.Neighbours[2]=0ther
other.Neighbours[0]=new

if other.Position[1]+1 == nposy:
new.Neighbours[@]=0ther
other.Neighbours[2]=new
nodelist.append(new)

i+=1

print(i, 'of',x*y2)

return nodelist

#4# Quellenverzeichnis

- [libcozmo](https://github.com/vinitha910/libcozmo) -
[cozmosdk](http://cozmosdk.anki.com/docs/index.html) -
[Line-follower](https://github.com/okoeth/cozmo-linefollow) -
[pycozmo](https://pypi.org/project/pycozmo/0.8.0/) - [Cozmo
Functions](https://pycozmo.readthedocs.io/en/stable/external/functions.html) - [Cozmo Robot, a
distant relative of Vector:
Teardown](https://www.microcontrollertips.com/teardown-anki-cozmo-vector/) - [Download Python

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 08:19

https://github.com/vinitha910/libcozmo
http://cozmosdk.anki.com/docs/index.html
https://github.com/okoeth/cozmo-linefollow
https://pypi.org/project/pycozmo/0.8.0/
https://pycozmo.readthedocs.io/en/stable/external/functions.html
https://www.microcontrollertips.com/teardown-anki-cozmo-vector/

2026/01/27 08:19 5/5 Roboterlabyrinth

example scripts that use the Cozmo SDK.](http://cozmosdk.anki.com/docs/downloads.html) - [To use
the Cozmo SDK](http://cozmosdk.anki.com/docs/initial.html) - [mithilfe eines
mikrocontrollergesteuerten RGB-LED-Steifens verschiedene
Sortieralgorithmen](https://gitlab.tu-berlin.de/LEDSort/Sort_Box) -
[Rosettacode](https://rosettacode.org/wiki/Dijkstra%27s_algorithm)

1)

640,640

2)

10,10

3)

200,200,200

4)

0,0

5)

NPOSX,Nposy
6)

a,b

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link:

Last update: 2021/11/07 16:02

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://cozmosdk.anki.com/docs/downloads.html
http://cozmosdk.anki.com/docs/initial.html
https://gitlab.tu-berlin.de/LEDSort/Sort_Box
https://rosettacode.org/wiki/Dijkstra%27s_algorithm
http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636297336

