
2026/01/27 06:12 1/5 Roboterlabyrinth

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Einleitung

Wie kann man bestimmte Daten, Dateien oder auch Wege innerhalb eines Systems oder einer Karte
finden? Die komplexen Arbeitsweisen dieser Algorithmen wurden über Jahre ausgiebig von
Mathematikern, Informatikern und Theoretikern auf Basis von mathematischen Grundlagen
ausgearbeitet, verfeinert oder neu konzipiert.

Für die meisten User sind heutzutage dennoch die Such- und Findungskonzepte der Informatik
heutzutage nicht verständlich genug. Zwar nutzen Sie nahezu täglich diese Konzepte, entweder direkt
in der Form von Navigationsgeräten oder indirekt durch nutzen von Paketdienstleistern.

Im Rahmen des Moduls “lab:prepare” soll das Projekt Robo-Lab die Funktionsweise von verschiedenen
und grundlegenden Suchalgorithmen wie A* oder Dijkstra dargestellt und für die nicht-technische
Zielgruppe verständlich visualisiert werden.

Dafür soll der von Anki hergestellte Cozmo-Roboter die unterschiedlichen Algorithmen implementiert
bekommen, um so eigenständig auf einer simplifizierten Vektorkarte der Technischen Universität
Berlin den kürzesten Weg zwischen zwei Punkten A und B zu finden. Hierbei sollen die Sensoren und
die Kamera des handflächen großen Roboters helfen, sich auf der erstellten Karte zu orientieren und
zu navigieren.

Für die Zielgruppe sollen mehrere Optionen zum aktiven Arbeiten möglich sein: Angeben, was die
Start- und die Zielpunkte sind Evtl. Auswahl des zu benutzenden Algorithmus oder Erstellen eigener
Wettkampf-Modus: zwei Cozmo, die auf Basis von verschiedenen Algorithmen arbeiten, laufen
gegeneinander um die Wette

Somit wollen wir vielerlei Möglichkeiten schaffen, diese Konzepte mit Spaß und Leichtigkeit für jedes
Alter anschaulich und interaktiv darzustellen.

Theorie

Viele Probleme der Graphentheorie können mithilfe von Suchalgorithmen effizient gelöst werden.
Beispiele für diese Probleme sind das Problem des Handlungsreisenden, die Berechnung kürzester
Pfade und die Konstruktion eines minimalen Spannbaums. Für unser Projekt werden solche
Suchalgorithmen mittels eines fahrenden Roboters veranschaulicht. Auf einer Karte kann die Effizienz
verschiedener Algorithmen auf diese Weise visuell verglichen werden. Die entsprechenden
Algorithmen sind zum Beispiel Bellman-Ford Algorithmus, Dijkstras Algorithmus oder A* Algorithmus,
die als Erweiterungen der Algorithmen für die Suche in Bäumen gesehen werden können. Einfacher zu
implementierende Algorithmen umfassen dabei beispielsweise die bekannte Tiefen- und
Breitensuche.

Zusätzlich muss das Kamerabild so verarbeitet werden, sodass die schwarze linie eindeutig
identifiziert werden kann.

Bauplan Da es sich hierbei um einen fertig gebauten Roboter handelt, der im Handel käuflich zu
erwerben ist, können wir keinen eigenen Bauplan vorzeigen. Weitere Infos zum Roboter sind auf der
eigenen Website unter https://www.digitaldreamlabs.com/ zu finden.

Zu der SW Entwicklung haben wir uns die Dokumentation und das reichlich vorhandene
Onlinematerial (Tutorials, Git-Repos etc.) angeschaut.

Material

https://www.digitaldreamlabs.com/

Last update:
2021/11/07 16:42 ss21:roboterlabyrinth http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636299721

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 06:12

- Cozmo

- Handy mit Cozmo App

- Karte

Aufbau

In dem Bild ist der Cozmo zu sehen, wie er exemplarisch einer Linie folgen soll.

![cozmo_linie_karte](uploads/edc432a0c545c43cb22b1be1c9ae507b/cozmo_linie_karte.jpg)

Im späteren Verlauf des Projektes soll es sich dann nicht nur um eine Linie handeln, sondern um ein
verzweigtes Netz von Wegen gedruckt auf einer Karte. Hierbei stellen wir uns eine Art von
Vektorkarte vor, die dieses Netz von Wegen aufzeigen soll. Diese kann ausgedruckt werden oder
mittels durchsichtiger Folie variabel gestaltet werden. Es ist ein Beispiel für eine Karte der Umgebung
der TU gezeigt. Abhängig von den Fähigkeiten des Cozmo werden Farbe, Glättung, Winkel und Breite
der Linien angepasst.

![example-card-vektor](uploads/66b47d3c3b4c79f41159dccf224a077d/example-card-vektor.png)

Start Anleitung:

- Handy mit dem PC verbinden - Cozmo anschalten und mit dem WLAN des Cozmos verbinden - App
starten und auf verbinden drücken → warten bis Cozmo verbunden - In den einstellungen der App
(oben rechts) muss die SDK eingeschaltet werden - Python Programm starten mittels

./linefollow.py

Zwischenstand

Das aktuelle Problem besteht darin, Cozmo eine Linie folgen zu lassen. Der Ansatz ist das Nutzen
eines bereits erhältlichen Scriptes (line_follower.py) und dieses mit eigenen Erweiterungen auf dem
Cozmo zu implementieren. Der nächste Schritt ist dann, die Suchalgortihmen und den line_follower so
zu verbinden, dass der Cozmo die Linien abfährt, dabei die Wege mappt und anschließend den
schnellsten Weg berechnet. Hierbei sollen die Algorithmen eigenständig implementiert werden, aber
über eine Schnittstelle mit line_follower verbunden werden können. Probleme bestehen darin, die
Skripte auf den Cozmo zu übertragen und korrekt auszuführen.

Verbesserungen für Version (nach 09.Juli.2021)

Es besteht die möglichkeit eine direkte verbindung über den PC, ohne die mobile App, mit dem Cozmo
aufzubauen. Dies ist ein open Source Projekt (PyCozmo) von privaten Entwicklern und bietet fast die
gleichen funktionen, wie die Cozmo SDK.

Digitalisierung

Da eine Fertigstellung nicht mehr zu realisieren war, wurde der Ansatz verfolgt, die Algorithmen
virtuell darzustellen:

main.py:

import pygame,sys,node

2026/01/27 06:12 3/5 Roboterlabyrinth

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

from pygame.locals import *
import pygamemenu

pygame.init()
disp=pygame.display.set_mode\(\(640,640))
items = [„Algorithm 1“,„Algorithm 2“,„Algorithm 3“,„exit“]
nodelist = node.grow(64,64)
pixel = pygame.Surface\1)

pixel.fill\2)

for i in nodelist:
disp.blit(pixel,(i.Position[0]*10,i.Position[1]*10))
choice = 0
while True:
pygame.time.delay(100)
pygame.display.update()
for event in pygame.event.get():
if event.type==QUIT:
pygame.quit()
sys.exit()

node.py:

from random import randint as rand
class Node:
def __init__(self, position):
self.Position = position
self.Neighbours = [None, None, None, None]
0
#3 1
2
def __eq__(self,other):
return self.Position == other.Position
def __repr__(self):
return str(self.Position[0])+','+str(self.Position)
def grow(x,y):
nodelist=[]
Start_node = Node\3)

nodelist.append(Start_node)
cur = Start_node
is_valid = lambda a,b: (a<x and b<y and a>=0 and b>=0)
i = 0
while i < (x*y2):#creates a random maze
cur = nodelist[rand(0,len(nodelist)-1)]#i know randchoice is a thing
r = rand(0,3)
nposx,nposy=cposx,cposy = cur.Position
if r == 0: nposy += -1
if r == 2: nposy += +1
if r == 1: nposx += +1
if r == 3: nposx += -1
if not is_valid(nposx,nposy):

Last update:
2021/11/07 16:42 ss21:roboterlabyrinth http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636299721

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/27 06:12

continue
new = Node\4)

if new in nodelist:
continue
'
Es werden 4 neue Knoten erstellt, die später wieder gelöscht werden. Eine
Hashmap wäre hier effizienter.
'
getnode = lambda a,b : nodelist[nodelist.index(Node\5))]
otherlist=[]
try:
otherlist.append(getnode(nposx,nposy-1))
except ValueError:pass
try:
otherlist.append(getnode(nposx+1,nposy))
except ValueError:pass
try:
otherlist.append(getnode(nposx,nposy+1))
except ValueError:pass
try:
otherlist.append(getnode(nposx-1,nposy))
except ValueError:pass
if len(otherlist)!=1:
continue
other=otherlist[0]
if other.Position[0]-1 == nposx:
new.Neighbours[1]=other
other.Neighbours[3]=new
if other.Position[0]+1 == nposx:
new.Neighbours[3]=other
other.Neighbours[1]=new
if other.Position[1]-1 == nposy:
new.Neighbours[2]=other
other.Neighbours[0]=new
if other.Position[1]+1 == nposy:
new.Neighbours[0]=other
other.Neighbours[2]=new
nodelist.append(new)
i+=1
print(i,'of',x*y2)
return nodelist

Quellenverzeichnis

- [libcozmo](https://github.com/vinitha910/libcozmo) -
[cozmosdk](http://cozmosdk.anki.com/docs/index.html) -
[Line-follower](https://github.com/okoeth/cozmo-linefollow) -
[pycozmo](https://pypi.org/project/pycozmo/0.8.0/) - [Cozmo
Functions](https://pycozmo.readthedocs.io/en/stable/external/functions.html) - [Cozmo Robot, a
distant relative of Vector:
Teardown](https://www.microcontrollertips.com/teardown-anki-cozmo-vector/) - [Download Python

https://github.com/vinitha910/libcozmo
http://cozmosdk.anki.com/docs/index.html
https://github.com/okoeth/cozmo-linefollow
https://pypi.org/project/pycozmo/0.8.0/
https://pycozmo.readthedocs.io/en/stable/external/functions.html
https://www.microcontrollertips.com/teardown-anki-cozmo-vector/

2026/01/27 06:12 5/5 Roboterlabyrinth

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

example scripts that use the Cozmo SDK.](http://cozmosdk.anki.com/docs/downloads.html) - [To use
the Cozmo SDK](http://cozmosdk.anki.com/docs/initial.html) - [mithilfe eines
mikrocontrollergesteuerten RGB-LED-Steifens verschiedene
Sortieralgorithmen](https://gitlab.tu-berlin.de/LEDSort/Sort_Box) -
[Rosettacode](https://rosettacode.org/wiki/Dijkstra%27s_algorithm)

1)

10,10
2)

200,200,200
3)

0,0
4)

nposx,nposy
5)

a,b

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link:
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636299721

Last update: 2021/11/07 16:42

http://cozmosdk.anki.com/docs/downloads.html
http://cozmosdk.anki.com/docs/initial.html
https://gitlab.tu-berlin.de/LEDSort/Sort_Box
https://rosettacode.org/wiki/Dijkstra%27s_algorithm
http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ss21:roboterlabyrinth&rev=1636299721

