
2026/01/30 01:07 1/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Kabelsalat

Kurzbeschreibung

Innerhalb des Projektes „Kabelsalat“ wollen wir der Öffenlichkeit das Prinzip der automatisierten
Hydroponik in einem abgeschlossenen System näherzubringen, wobei wir selbst ein hydroponisches
System in ein Gewächshaus integrieren.

Github: https://github.com/j-h-f/kabelsalat-lab

Webseite: https://www.kabelsalat-lab.de/

Darstellung bisheriger Arbeit

Arbeitsaufteilung

Hydroponik und Gewächshaus

Planung und Bau des hydroponischen Systems
Planung und Bau des Gewächshauses
Videodreh und -schnitt
Erstellung eines Tutorials für den Bau

Sensorik

Bewässerung (Pumpe) Jan-Hendrik
Feuchtigkeitsmessung durch Sensoren Inken
Belichtung durch LED Stripes
Belüftung des Gewächshauses
Luftstrom an den Pflanzen
Electrical Conductivity des Wassers (optional: PH-Wert)
optional: Wasserstand
Temperaturmessung- Luft und Wasser Inken

Wissenschaftskommunikation

Pflege dieses Wikis
Erstellung und Pflege einer Website

Bisherige Arbeit

Hydroponik und Gewächshaus

Bearbeitung einer Teströhre und Start des Baus eines Prototypen

https://github.com/j-h-f/kabelsalat-lab
https://www.kabelsalat-lab.de/

Last update: 2021/04/30
16:08 ws2021:kabelsalat http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/30 01:07

Sensorik

In diesem Abschnitt wird der technische Aufbau des Gewächshausen vor allem im Hinblick auf die
verwendete Sensorik beschrieben.

http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:kasa-prototyp-1.jpg
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:kasa-prototyp-2.jpg

2026/01/30 01:07 3/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Verwendete Bauteile

Arduino Nano
ESP01-S
Relais-Modul
Temperatursensor BME/BMP280
Reich Tauchpumpe
LED-Streifen für Pflanzen

Arduino Nano

“Arduino is an open-source hardware and software company, project and user community that
designs and manufactures single-board microcontrollers and microcontroller kits for building digital
devices.” [https://en.wikipedia.org/wiki/Arduino]
Der Arduino ist also ein Mikrocontroller, der nach Belieben programmiert werden kann und dann als
Hauptsteuereinheit diverser Projekte genutzt werden kann.
Bei einem Mikrocontroller handelt es sich, vereinfacht gesagt, um einen winzigen Computer,
bestehend aus einem Prozessor, einem Arbeitsspeicher (RAM) und ggf. weitere Peripheriebauteile, wie
bspw. externer Speicher oder I/O-Schnittstellen (USB, I2C, SPI…)
Der große Unterschied zwischen einem richtigen PC und einem Mikrocontroller liegt darin, dass der
Mikrocontroller auf einen bestimmen Anwendungsfall zugeschnitten und entwickelt ist. Dies bringt
den Vorteil, dass kleine Projekte, wie bspw. unser Hydroponisches Gewächshaus sehr günstig “zum
leben erweckt werden können”. Das liegt daran, dass die Mikrocontroller aufgrund ihrer beschränkten
Rechenleistung und Speicherkapazität sehr günstig sind, aber dennoch ausreichend Funktionalität
bieten, um ein etwas komplexeres Projekt zu realisieren.

http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:arduino-nano-pinout-schema.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:arduino-nano-pinout-schema.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:arduino-nano-pinout-schema.png
https://en.wikipedia.org/wiki/Arduino]

Last update: 2021/04/30
16:08 ws2021:kabelsalat http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/30 01:07

ESP01-S

Der ESP01-S ist auch ein Mikrocontroller, der auch, ähnlich wie der Arduino, programmiert werden
kann, um Steuerungsaufgaben zu übernehmen.
Der Unterschied zwischen einem ESP01-S und einem Arduino liegt darin, dass der ESP01-S
Mikrocontroller auf dem sogenannten ESP8266 Mikroprozessor basiert. Der Vorteil an dem ESP8266
Mikroprozessor ist, dass dieser einen WLAN-Chip verbaut hat, mit dem der ESP01-S eine Verbindung
zum Internet aufbauen kann.
Der Nachteil am ESP01-S Mikrocontroller ist. Dass dieser nur 2 I/O Pins besitzt. Das bedeutet, dass
man nur über 2 Signalleitungen (GPIO Pins) mit anderen Geräten kommunizieren kann. Somit eignet
sich der ESP01-S meist nur für sehr kleine Projekte, wie z.B. ein Thermometer, welches über WLAN
ausgelesen werden kann. Alternativ kann man den ESP01-S auch als WLAN-Modul mit einem Arduino
verbinden.

http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:esp01-esp01s-pinout-esp8266ex-1453x1536.jpg
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:esp01-esp01s-pinout-esp8266ex-1453x1536.jpg

2026/01/30 01:07 5/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Relais Modul

Das Relais-Modul wird benötigt, damit der Arduino Höhere Spannungen und Höhere Ströme mit einem
sehr kleinen Steuerungssignal steuern kann. Wenn beispielsweise eine Handelsübliche LED-
Glühlampe mit einer GU4-Fassung steuern möchte, fällt auf, dass die LED eine Spanung von 12 Volt
braucht. Der Arduino hingegen hat aber nur eine Ausgangsspannung von 5V an den GPIO Pins und
einen Ausgangsstrom von maximal 40mA (wobei max. 20mA empfohlen sind). Das reicht nicht aus,
um die LED, oder Andere Geräte zu steuern, die entweder eine höhere Spannung oder eien größeren
Strom brauchen zu betreiben. In diesem Fall schafft unser Relais-Modul abhilfe. Dieses ist im Grunde
eine mechanischer Schalter, der durch den Arduino gesteuert werden kann. Der Arduino wird an die 3
(oder mehr) sogenannten „Pin-Header“ des Relais-Moduls angeschlossen. Das Relais-Modul verfügt

Last update: 2021/04/30
16:08 ws2021:kabelsalat http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/30 01:07

über mindestens 3 dieser Pin-Header Anschlüsse, die Anzahl ist dabei abhängig, wie viele einzelne
Relais auf dem Modul Verbaut sind. Die Bezeichnungen der Anschlüsse lauten wie folgt:

VCC → ist die Versorgungsspannung und wird an den 5V Pin des Arduinos angeschlossen.
GND → ist der Ground bzw. Minus Anschluss und wird mit dem GND Anschluss des Arduinos
verbunden
IN1 bis INX → sind die Signal Anschlüsse um die einzelnen Relais zu steuern. Wenn auf dem
Modul 4 Relais verbaut sind, dann gibt es die Anschlüsse IN1, IN2, IN3, IN4. Wenn nur 1 Relais
Verbaut ist, dann gibt es nur IN1 usw.

Jedes auf dem Relais-Modul verbaute, einzelne Relais verfügt zusätzlich über je 3 Anschlüsse, die mit
sogenannen Schraubterminals versehen sind. Diese Anschlüsse dienen dazu die
Versorgungsspannung für die zu Schaltenden Geräte enweder an oder aus zu schalten. Die
Anschlüsse am Relais haben folgende bezeichnungen:

COM/CO/C → ist der Hauptanschluss des Relais. An diesen sollte der Plus-Pol der
Versorgungsspannung angeschlossen werden.
NO → ist der „Normally Open“ Anschluss. Das bedeutet, dass dieser Anschluss „geöffnet“ ist,
wenn keine Schaltspannung anliegt und somit kein Strom fließen kann. Das Relais schaltet also
ab, wenn keine Schaltspannung anliegt.
NC → ist der „Normally Closed“ Anschluss. Das bedeutet, dass dieser Anschluss „geschlossen“
ist, wenn keine Schaltspannung anliegt und somit Strom fließen kann. Das Relais Schaltet das
angeschlossene Gerät als an, wenn keine Schaltspannung anliegt.

Möchte man nun eine Lampe mit einem Solchen Relais schalten, sieht der Aufbau wie folg aus:
<dtable>

Relais-Pin Arduino Pin
VCC 5V
GND GND
IN1 D3

Der Anschluss des Relais an den Arduino ist also relativ simpel und benötigt an sich nur 3 Kabel. beim
Anschluss der Lampe an das Relais muss man jedoch ein wenig aufpassen. Erstens sollte man
genauestens auf die maximalen Werte achten, die ein solches Relais schalten kann. Zweitens ist es
nicht ratsam eine Lampe, die mit Netzspannung funktioniert (also direkt 220V aus der Steckdose)
denn bei unsachgemäßem Arbeiten mit Netzspannung besteht Lebensgefahr!. Es ist Ratsam
sich ein Fertiges Netzteil zu besorgen, welches in die Steckdose gesteckt wird, und dann die

http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:arduino-relay-wiring-diagram.png

2026/01/30 01:07 7/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Netzspannung in 12V Gleichspannung umwandelt. Nichtsdestotrotz ist hier immer noch Vorsicht
geboten. Um die 12V aus dem Netzteil auf ein Breadboard zu bekommen bietet es sich an, eine
passende Buchse für den Stecker des Netzteiles zu verwenden. Nun kann der Plus-Anschluss der
Buchse mit dem COM-Anschluss des Relais verbunden werden, der Minus-Anschluss wird mit dem
Minus-Pul der Lampe verbunden. Um nun den Stromkreis zu vervollständigen muss der Plus-Pol der
Lampe mit dem NO-Anschluss des relais verbunden werden. Somit ist der Aufbau der Hardware
komplett und wenn nun ein Signal von Pin D3 zum Relais Modul gesedet wird, sollte die Lampe
leuchten. Der Code um das zu realisieren ist denkbar einfach:

int IN_PIN = 3;
void setup() {
 pinMode(IN_PIN, OUTPUT);
 digitalWrite(IN_PIN, LOW);
 Serial.begin(9600);
}
void loop() {
 digitalWrite(IN_PIN, HIGH);
 Serial.println("Lamp is on");
 delay(2500);
 digitalWrite(IN_PIN, LOW);
 Serial.println("Lamp is of");
 delay(2500);
}

Der Codeblock sorgt jetzt dafür, dass das Relais alle 2,5 Sekunden (2500 Millisekunden) invertiert
wird. Beudeutet, wenn das Relay an ist, dann wird es ausgeschaltet und anders herum. In der ersten
Zeile wird als erstes eine Variable definiert, die den Pin, an dem der In-Anschluss des Relais
angeschlossen ist speichert, definiert. In dem Beispiel ist das Pin 3 des Arduinos. In der Setup
Funktion wird durch den Aufruf von

pinMode(IN_PIN, OUTPUT);

der Pin „IN_PIN“ als OUTPUT definiert. Somit weiß der Arduino, dass dieser Pin „HIGH“ (An) oder
„LOW“ (Aus) geschaltet werden kann. (Als gegenstück gibt es auch noch die Definition als INPUT,
wodurch der Arduino dann misst, ob der Pin „HIGH“ oder „LOW“ ist.) In der Zeile darunter wird der
Initiale Zustand des IN_PINs auf „Low“ (also aus) gestzt, indem die Funktion

digitalWrite(IN_PIN, LOW);

aufgerufen wird. „digitalWrite(pin, status)“ wird immer Verwenden, um einen Pin, der im Code als
„OUTPUT“ definiert wurde auf den Zustand <status> zu setzen. Das kann entweder „HIGH“ oder
„LOW“ sein, was an dem Pin dann einen 5V Pegel bzw. einen 0V Pegel hervorbringt. Anschließend
wird in der Loop Funktion, die ja immer und immer wieder ausgeführt wird, der Input Pin alle 2,5
Sekunden auf „HIGH“ bzw. „LOW“ gesetzt, was dazu führt, dass die am Relais angeschlossene Lampe
im 2,5 Sekunden Takt blinkt.

Temperatursensor BME/BMP280

Last update: 2021/04/30
16:08 ws2021:kabelsalat http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/30 01:07

Der BME/BMP280 Tempratursensor ist ein Vollständiges Modul, das die Temperatur, die
Luftfeuchtigkeit und den Lufdruck misst und die gemessenen Daten anschließend über eine I²C
Schnittstelle ausgibt. Durch die Ausgabe über die I²C Schnittstelle können die Daten sehr einfach mit
dem Arduino ausgelesen und verarbeitet werden. Zusätzlich gibt es eine Bibliothek, die es erlaubt mit
einem Funktionsaufruf die Daten auszulesen.
Für die Verbindung des BME/BMP280 Sensors mit dem Arduino werden 4 Kabel benötigt. Die

Verbidnung sieht wie folgt aus:

BME280 Pin Arduino Pin
VCC 5V
GND GND
SCL A5
SDA A4

https://de.wikipedia.org/wiki/I%C2%B2C
https://de.wikipedia.org/wiki/I%C2%B2C
https://github.com/adafruit/Adafruit_BME280_Library
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:bme-schema.png

2026/01/30 01:07 9/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Die Pins SCL und SDA sind die Anschlüsse des I²C Busses. Über diese Pins werden Datenpakete hin
und her gesendet, wodurch der im Code des Arduinos die gemessenen Werte des Sensors angefragt
werden können.

Um die Daten des BME/BMP280 einfach auszulesen gibt es die Adafruit BME280 Library auf Github.
Wenn diese Bibliothek installiert ist, dann sieht der Code wie folgt aus:

/*
 * Complete Project Details
https://randomnerdtutorials.com/bme280-sensor-arduino-pressure-temperature-h
umidity/
*/

#include <Wire.h>
#include <Adafruit_Sensor.h>
#include <Adafruit_BME280.

#define SEALEVELPRESSURE_HPA (1013.25)

Adafruit_BME280 bme; // I2C

unsigned long delayTime;

void setup() {
 Serial.begin(9600);
 Serial.println(F("BME280 test"));

 bool status;

 // default settings
 // (you can also pass in a Wire library object like &Wire2)
 status = bme.begin();
 if (!status) {
 Serial.println("Could not find a valid BME280 sensor, check wiring!");
 while (1);

https://github.com/adafruit/Adafruit_BME280_Library

Last update: 2021/04/30
16:08 ws2021:kabelsalat http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/30 01:07

 }

 Serial.println("-- Default Test --");
 delayTime = 1000;

 Serial.println();
}

void loop() {
 printValues();
 delay(delayTime);
}

void printValues() {
 Serial.print("Temperature = ");
 Serial.print(bme.readTemperature());
 Serial.println(" *C");

 Serial.print("Pressure = ");
 Serial.print(bme.readPressure() / 100.0F);
 Serial.println(" hPa");

 Serial.print("Approx. Altitude = ");
 Serial.print(bme.readAltitude(SEALEVELPRESSURE_HPA));
 Serial.println(" m");

 Serial.print("Humidity = ");
 Serial.print(bme.readHumidity());
 Serial.println(" %");

 Serial.println();
}

Der Kern dieses Codeblocks liegt in den Zeilen

Adafruit_BME280 bme; // I2C
status = bme.begin();

mit der ersten Zeile wird eine Variable „bme“ der Klasse „Adafruit_BME280“ Instanziert. Somit sind
jetzt über die Variable „bme“ alle benötigten Funktionen Verfügbar. In der zweiten Zeile wird dann
dann die Funktion „bme.begin()“ aufgerufen, die eine I²C Verbindung zu dem Sensor aufbaut. Der
Rest der Funktionen, die in der Setup Funktion aufgerufen werden sind einfache Konfigurationen, die
nur für dieses Beispiel benötigt werden, eine detailierte Erklärung kann unter
https://randomnerdtutorials.com/bme280-sensor-arduino-pressure-temperature-humidity/ gefunden
werden. Letztendlich sehr wichtig sind die Funktionen

bme.readHumidity()
bme.readTemperature()

https://randomnerdtutorials.com/bme280-sensor-arduino-pressure-temperature-humidity/

2026/01/30 01:07 11/11 Kabelsalat

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Diese Funktionen machen im Hintergrund alles nötige, um die Daten, die der BME/BMP280 Sensor
misst, als einfache Zahl in den Arduino zu bekommen. In dem konkreten Fall sind das die Werte der
Luftfeuchtigkeit in Prozent und die Temperatur in °C.

Tauchpumpe

 Die Pumpe wird verwendet, um das Wasser vom Unteren Wassertank zur spitze des
Hydroponikturms zu pumpen.

LED-Streifen für Pflanzen

Quellen

Baras, T: DIY Hydroponic Gardens: How to Design and Build an Inexpensive System for Growing
Plants in Water

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link:
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

Last update: 2021/04/30 16:08

http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2021%3Akabelsalat&media=ws2021:pumpe.jpg
http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2021:kabelsalat&rev=1619791723

	Kabelsalat
	Kurzbeschreibung
	Darstellung bisheriger Arbeit
	Arbeitsaufteilung
	Bisherige Arbeit

	Sensorik
	Verwendete Bauteile
	Arduino Nano
	ESP01-S
	Relais Modul
	Temperatursensor BME/BMP280
	Tauchpumpe
	LED-Streifen für Pflanzen
	Quellen

