2026/01/29 06:21 1/9 Hintergrund

Hintergrund

Was ist Conways Game of Life?

Game of Life ist ein 0-Player-Game zur Umsetzung der Automaten-Theorie von Stanistaw Marcin Ulam,
entworfen von dem Mathematiker John Conway. Wenige, einfache Regeln fuhren dabei zu verbluffend
komplexem Verhalten.

Regeln

Das Feld ist aufgeteilt in einzelne, quadratische Zellen, die einfach so nebeneinander angeordnet
sind, dass jede Zelle 8 Nachbarn hat (wie auf einem Karo-Papier). Jede Zelle kann entweder lebendig
oder tot sein, dieser Status hangt vom Anfangszustand und dem Zustand der 8 Nachbarn ab, die die
Zelle ,sehen” kann. In jeder Runde (=Generation) zahlt jede Zelle, wie viele ihrer Nachbarn lebendig
ist und andert dann je nach Anzahl den eigenen Lebensstatus nach folgenden Regeln:

e Zellen mit weniger als 2 Nachbarn sterben (an ,Vereinsamung”)
e Zellen mit genau 2 Nachbarn andern ihren Status nicht

e Zellen mit genau 3 Nachbarn werden lebendig

e Zellen mit mehr als 3 Nachbarn sterben (an ,Uberbevélkerung®)

Vision

Im Rahmen unseres Projektes mdchten wir die Funktionsweise von Conway's Game of Life mit Hilfe
einer interaktiven leuchtenden Kunstinstallation erfahrbar machen. Um ein intuitives Verstandnis der
Thematik zu férdern, wollen wir ein manuell verstellbares und programmierbares Display bauen.

Ziele

Feld aus 3×3 Einzelzellen bauen

Interaktivitat durch Hall-Sonde & Magnet am ,Zauberstab“

Aufbau soll cell-based sein: Jede Zelle sieht nur ihre Nachbarn, es gibt also kein grolRes

Programm im Hintergrund, das alle Zellen ansteuert

modulare Aufbauweise: Das Feld soll in verschiedenen Konfigurationen aufgebaut werden

kénnen, um Strukturen verschiedenen Ausmalies darstellen zu kdnnen (daflr idealerweise jede

Zelle einzeln herausnehm- und zusammensteckbar)

¢ das Projekt soll vollstandig dokumentiert und open-source sein

e Nebenziel: Erweiterung der Installation zur Visualisierung komplexerer Strukturen durch
nebenstehenden PC

¢ Traumziel: wenn Zeit und Resourcen da sind auf ein ca. 20\times20 Feld erweitern

Arbeitsablauf

Anfangsuberlegungen

Zellform: Wir hatten kurz mit dem Gedanken gespielt, die Felder achteckig zu gestalten, da man dort
aber zwangslaufig Zwischenrdaume hat, die Uberbrickt werden mussen, sind wir doch zu den Ublichen

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://de.wikipedia.org/wiki/Conways_Spiel_des_Lebens
https://de.wikipedia.org/wiki/Automat_(Informatik)

Last update:

2022/04/10 17:48 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649605683

Quadraten zurlickgekehrt.

lebendig/tot darstellen: Die Urspriingliche Idee war ein Flippdot-Display selbst zu bauen, das
schien in der Planung aber zu groller Aufwand zu werden und auch zu fragil fur die Nutzung durch
Personen, die sich nicht genau damit auskennen, daher haben wir uns dazu entschieden, den
Lebensstatus der Zellen Uber eine LED sichtbar zu machen. Eine leuchtende Zelle symbolisiert also
eine lebendige Zelle, eine nicht leuchtende eine tote.

Welcher Sensor?: Um die Interaktivitat zu gewahrleisten, also direkt am Feld verschiedene
Anfangsbedingungen einstellen zu kénnen, brauchen wir eine Art Knopf. Ein simpler Druckknopf in
jeder Zelle schien uns zu unhandlich, gerade bei groReren Feldern, deswegen haben wir uns
letztendlich fUr eine Losung mit einer Hall-Sonde (Magnetsensor) in jeder Zelle entschieden, sodass
man den Lebensstatus der Zelle durch Beruhrung mit einem ,Zauberstab” (fancy Stab mit Magnet an
der Spitze) geandert werden kann. Weitere Ideen, die wir vor allem auf Grund der Storanfalligkeit
durch dulBere Einflusse verworfen haben, waren ein Kapazitatsberthrungssensor und weiter
BerUhrungssensoren, die Uber die Erschutterung einer kleinen Feder ausgelost werden.

Zelldesign

Jede Zelle besteht aus einem 3D-gedruckten Zellkorper , der so gestaltet ist, dass man die Zellen
einfach ineinander schieben kann und somit ein solides Feld erhalt. darin missen die Hall-Sonde, eine
LED, ein Arduino Nano und einiges an Kabeln Platz finden, deswegen haben wir die Zellkdrper 7cm
tief gedruckt.

Die LED und die Hall-Sonde werden im ebenfalls 3D-gedruckten Deckel befestigt (s. Bild, das noch
eingeflgt werden muss), damit das Licht von auBen gut sichtbar ist und alle Zellen einheitlich
leuchten und ebenso einheitlich auf den Magneten reagieren. AuBerdem gibt es Aussparungen fur die
Steckverbindungen der Kabel, die die Kommunikation der Zellen ermdéglicht, im Deckel, sodass diese
gut sichtbar sind und auch im zusammengesteckten Zustand leicht geandert werden kénnen. Dies hat
sowohl den praktischen Grund, dass es wohl die einfachst mégliche L6sung der Kommunikation ist,
als auch padagogische, denn so kann man im laufenden Betrieb eine Verbindung unterbrechen und
daruber demonstrieren, wie die Zellen einander ,sehen”. Abgedeckt ist die 3d-gedruckte
Deckelrahmenkonstruktion mit milchigem Acrylglas, das mit dem Laser-Cutter geschnitten wurde. Die
Rlckseite ist mit einem ebenfalls 3D-gedruckten Deckel verschlossen, in dem Aussparungen fur die
Stromverbindung (und Taktgebung?) sind.

Die 3D-gedruckten Teile wurden mit einem SLA-Drucker gedruckt, da dieser an sich genauer drucken
kann als ein FDM-Drucker. Dadurch, dass die Teile nach dem Drucken aber gehartet werden mussen,
besteht bei unseren recht dinnen Wanden eine Neigung zum Neigen. Deswegen drucken wir die Teile
doch lieber mit einem FDM-Drucker.

Software

Jede Zelle tragt das gleiche kleine Programm in sich, dass im Prinzip nur die Anzahl der lebendigen
Nachbarn zahlen und danach entscheiden muss, wie ihr Lebensstatus sein soll. Das grofte Problem
hierbei ist die Taktung, denn alle Zellen mussen zunachst den Status ihrer Nachbarn auslesen, bevor
sie ihren eigenen andern, ansonsten wirde es zu Fehlern kommen. Recht leicht Idsbar ware diese
Herausforderung, wenn man alle benachbarten Zellen mit jeweils zwei Kabeln verbinden wirde. Dann
wurde an einem Zelle A ihren Lebensstatus schreiben, was Zelle B lesen konnte und an dem anderen
umgekehrt. Das kann allerdings schnell zu einem riesigen Kabelsalat fihren und die Anzahl der Pins
an den Nanos warde nicht reichen, daher wollten wir eine Losung, in der zwischen zwei benachbarten
Zellen immer nur ein Kabel verlauft. Dafur durfen zwei benachbarte Zellen nicht versuchen,

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 06:21

2026/01/29 06:21 3/9 Hintergrund

gleichzeitig ihren Lebensstatus Uber das gleiche Kabel zu vermitteln.

Unsere erste Idee war, die Zellen im Schachbrettmuster auslesen zu lassen, also in zwei Gruppen
(angeordnet wie schwarze und weilRe Felder auf einem Schachbrett), in denen sich die Zellen mit
lesen und schreiben abwechseln. Allerdings lesen sich die diagonal zueinander liegenden Zellen so
immer noch gleichzeitig aus, mit diesem Ansatz funktioniert es also nicht.

Die zweite und auch verwendete Idee ist, die Arduinos in acht Schritten in einer Art ,,Uhr” ihre
Nachbarn auslesen zu lassen. Dafir lesen zuerst alle Arduinos den Nachbarn aus, der Uber ihnen
angeordnet ist und schreiben dann logischerweise auf den passenden Nachbarn, also den, der unter
ihnen angeordnet ist. Dann geht es im Uhrzeigersinn weiter: als nachstes wird rechts oben gelesen
und links unten geschrieben und so weiter, bis die Uhr einmal herum ist und alle acht Nachbarn
ausgelesen und beschrieben wurden. Fur diese Umsetzung ist eine zentrale Taktung notwendig, damit
wirklich alle Zellen genau gleichzeitig das gleiche tun. Dafur kam die Idee auf, einen zentralen
Taktgeber-Arduino zu verwenden, der Uber die analog-Pins die verschiedenen Schritte Uber
unterschiedlich hohe Spannung angeben sollte. Das erwies sich in der Umsetzung als komplizierter als
gedacht und auch als komplizierter als nétig. Es reicht namlich véllig, einen Taktgeber zu haben, der
die ganze Zeit Impulse an alle Zellen-Arduinos schickt und diese dann zahlen zu lassen.

Mochte man mit dem Magneten den Lebensstatus der Zellen andern, also eine neue
Startkonfiguration setzen, so muss dieser Prozess unterbrochen werden. Dafur gibt es einen
einfachen Kippschalter, der entweder auf ,automatik” (das Programm lauft wie oben beschrieben
durch) oder auf ,manuell“ geschaltet sein kann. Schaltet man auf manuell um, so wird der aktuelle
Taktungsdurchlauf noch abgeschlossen, danach sendet der Taktgeber aber keine weiteren Signale
mehr. In diesem Zustand kann man nun mit dem Magneten den Lebensstatus der Zellen verandern.
In dem manuellen Modus kann man auBerdem Uber einen Druckknopf einzeln die Generationen
durchgehen, was nltzlich zum erklaren der grundsatzlichen Regeln ist.

Der Code der Zellen besteht also grob aus folgenden Abschnitten:

1. Mdglichkeit, mit Magnet den Status zu andern
2. Nachbarn zahlen (nach ,,Uhr*)
3. je nach Anzahl der Nachbarn Uber eigenen Lebensstatus entscheiden

FUr Details und Code des Taktgebers siehe den ordentlich auskommentierten Code.

Ergebnis

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code
https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code

Last update: .) . gl - 2= ; . _
2022/04/10 17:48 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649605683

Die Fertige Zelle sieht am ende wie folgt aus.

Im Idealfall sollten deutlich kiurzere Kabel verwendet werden, die dann an den Arduino gel6tet
werden, damit die Zellkorper nicht so vollgestopft werden. Darauf haben wir bis jetzt allerdings

verzichtet damit alle Materialien wieder verwendet werden konnen. Ein komplettes 3x3 Feld konnten
wir noch nicht testen, da dafur noch

Materialien fehlen aber ein Test auf
einem Steckbrett hat gezeigt das alles
grundsatzlich funktioniert, wie es soll. ##%

Materialien

Algemein benodtigte Materialien:
Beliebiger Arduino (auch fur Stromversorgung verantwortlich)|1

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 06:21

2026/01/29 06:21

5/9 Hintergrund

Kippschalter

Druckknopf

Benoétigte Materialien pro Zelle:

Arduino nano 1
LEDs 1
Halleffekt-Sensoren 1
Kabel:

male-male (Kommunikation)

4 (ein 3x3 Feld braucht insgesammt nur 27)

Kommunikations anschlisse (x-female)

8

Kabel fur interne Elektronik

3 (Hallsonde) + 2 (LED)

Strom Kabel 2
Takt Kabel 1
Code

Jeder Arduino nano der in eine Zelle Verbaut ist benétigt folgenden Code:

CellGenome.ino

#define LED 11

Gesteuert durch interne Logik

#define sensorPIN A4

#define sensorVALUE analogRead(A4)

#define stepPIN A5
durch externe Logik

#define readPIN (stepSTATE+3)%8+2
den die Nachbarcellen gelesen werden
#define writePIN stepSTATE+1

//LED/STATUS pin dieser zelle.
//pin zur Senor auswerung

//sensor wert

//pin zur koordinierung. Gestteuert

//formel zur berechnung der Pins an

//formel zur berechnung der Pins an

den Nachbarcelen angeschrieben werden

#define stepINPUT digitalRead(A5)

int stepSTATE = 0O;
den Lese/Schreibe cyclus

boolean stepTOGGLE = false;

int jobSTATE = 0;
Lese/Schreibe cyclus

boolean 1iveSTATE
int 1iveNEIGHBOUR
cellen

0;

false;

const int threshold = 450;

anschlagen soll

boolean sensorTOGGLE = false;

void setup() {
//Serial.begin(9600);
pinMode (LED, OUTPUT) ;

//extern angegebener Counter fir

//toggle fir den stepSTATE
//interner counter fir den

//"Lebens"status dieser Zelle
//Anzahl der "Lebenden" Nachbar

//Grenzwert ab dem der Sensor

//"sensor zustand"

//LED Pin

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=0

Last update:

2022/04/10 17:48 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649605683

pinMode(sensorPIN, INPUT); //Pin wo die hall-sonde ausgelesen
wird
pinMode(stepPIN, INPUT); //Pin wo durch der Lese/schreibe

cyclus reinkommt
pinMode (12, OUTPUT) ;
pinMode (12, LOW);

¥

void loop() {
digitalWrite(LED, 1iveSTATE) ; //Die LED
spiegelt den Lebensstatus der Zelle wieder

17 (stepTOGGLE == false && stepINPUT == true) //wurde
bis jetzt noch kein genarationsimpuls regestriert, geht aber grad einer
ein

stepTOGGLE = true; //wird
vermekt das ein impuls eingeht

stepSTATE += 1; //und
eine genaration hochgegangen

}

17 (stepTOGGLE == true &4 stepINPUT == false){ //1ist

vermerkt das ein Impuls registriegt wurde, liegt aber keiner an
stepTOGGLE = false; //wird
dies vermerkt
}
it (stepSTATE == 0){ //geht die

Celle nicht die genarationen durch, kann mit dem magneten der status
geandert werden:

1T (sensorVALUE <= threshold && sensorTOGGLE == false){ //Ist der
Magnet nah genug dran und wars bis jetzt aber noch nicht

sensorTOGGLE = true; //wird
vermerkt das der Magnet nahgenug dran ist
1liveSTATE = !1iveSTATE; //der

Lebenstatus geandert
Serial .println(sensorVALUE) ;

}
if (sensorVALUE > threshold){ //ist der
Magnet wieder weiter weg
sensorTOGGLE = false; //wird
vermerkt das grad kein Magnet da ist
}

}

1T (stepSTATE = 0 && stepSTATE < 9 &4 jobSTATE == stepSTATE - 1)1
//werden die schritte durchgegangen:
if (stepSTATE == 1){

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 06:21

2026/01/29 06:21 7/9 Hintergrund

//wird erst gecheckt ob dies der erste schritt ist
1liveNEIGHBOUR = 0;
//ist dies der fall wird der Nachbar counter auf null gesetzt
}
pinMode (writePIN, OUTPUT) ;
//es wird der Erste pin in der folge als out-put definiert
digitalWrite(writePIN, LliveSTATE) ;
//und dariber der lebensstatus an den entsprechenden nachbarn
vermittelt
pinMode (readPIN, OUTPUT) ;
digitalWrite(readPIN,6LOW) ;
//der entsprechend gegeniuberliegende pin wird resetet,
pinMode (readPIN, INPUT) ;
//als input definiert
1iveNEIGHBOUR += digitalRead(readPIN) ;
//und sofern dort eine Lebende nachbarcelle entdeckt wird, wird dies
vermerkt
JObSTATE++;
//es wird vermerkt das der erste schritt fertig ist
Serial.print(1liveNEIGHBOUR) ;
Serial.print(" Nachbarnzahl, die nach dem pin ");
Serial .print(readPIN);
Serial.println(" gelesen wurde");

}
else 1T (stepSTATE ==9 && joObSTATE == stepSTATE - 1){ //wenn
angefordert und fertig mit Job 2 werden die Regeln angewendet:
if (liveSTATE == false && 1iveNEIGHBOUR == 3){ //tote
Zelle mit genau drei Lebenden Nachbarn
1liveSTATE = true; //wird
Lebendig
}
else 1T (liveSTATE == true && 1iveNEIGHBOUR < 2){ //Lebende
Celle mit weniger als zwei Lebenden Nachbarn
1liveSTATE = false; //Stirbt
}
else 1if (liveSTATE == true && 1iveNEIGHBOUR > 3){ //Lebende
Celle mit mehr als 3 Lebenden Nachbarn
1liveSTATE = false; //Stirbt
}
Serial.println();
Serial.print("Gesammt zahl lebender Nachbarn:");
Serial . println(1liveNEIGHBOUR) ;
Serial.println();
jObSTATE = 0; //Fertig
mit allen Jobs,
stepSTATE = 0; //wartet
auf erste Aufgabe
}

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Last update:
2022/04/10 17:48

}

ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649605683

Der Taktgebende Arduino wird mit folgendem Code bespielt:

controllpanell.ino

#define button 8 //Der druckknopf
flir's schritweise fortschreiten der Genarationen wird an diesen Pin
angeschlossen

#define Switch 7 //Der Kippschalter

mit dem zwischen "Manuell" und "Automatisch" gewechselt werden kann
wird an diesen Pin angeschlossen

#define PulseQut A5 //0utput Pin fir die
Pulse

#define Delay 5 //verzogerung zwischen
den einzelnen Pulsen (ein Genarationswechsel braucht 16*Delay
millisekunden)

boolean stepTOGGLE = false; //toggle mit dem ein

Knopfdruck eine funktion BloB einmal ausfiuhrt, bis der knopf das
nachste mal gedrickt wird

void setup() {
Serial.begin(9600);
pinMode (PulseOut, OUTPUT)
pinMode (button, INPUT);
pinMode (7, INPUT);

}
void loop() {
if(digitalRead(Switch)== true){ //wenn der Schalter
umgelekt ist
for (int i =1; 1 <= 9; i++){ //wird acht mal
digitalWrite(PulseOut, HIGH) ; //der Takt pin an,
delay(Delay) ; //nach kurzem Delay
digitalWrite(PulseOut, LOW) ; //aus geschaltet.
delay(Delay) ; //dies wird nach
kurzem delay wiederholt
}
}
else{ //ist der schalter

nicht umgelegt
if(stepTOGGLE == false && button == true){ //wird nach der selben
Logik wie im code "CellGenome" getestet ob gerade ein Signal
eingegangen ist (der knopf gedriickt wurde)
stepTOGGLE = true;
for (int i = 1; 1 <= 9; i++){ //und 8 impulse mit
entsprechender lange und entsprechenden Pausen abgegeben.

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 06:21

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=1

2026/01/29 06:21 9/9 Hintergrund

Serial.println(i
digitalWrite(PulseOut,6 HIGH
delay(Delay
digitalWrite(PulseOut, LOW
delay(Delay

stepTOGGLE true button false
stepTOGGLE false

Verbesserungsideen

e Kabel anders |6sen (groBer Kabelsalat)
* nicht jede Zelle mit einem Nano, sondern eigenen Chips designen
e Taktung eleganter l6sen (z.B. mit interrupt-Funktion der Nanos)

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link: %
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of _light&rev=1649605683 "":

Last update: 2022/04/10 17:48

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light&rev=1649605683

	[Hintergrund]
	[Hintergrund]
	Hintergrund
	Vision
	Ziele
	Arbeitsablauf
	Anfangsüberlegungen
	Zelldesign
	Software

	Ergebnis
	Materialien
	Code
	Verbesserungsideen

