2026/01/29 04:47 1/9 Hintergrund

Hintergrund

Was ist Conways Game of Life?

Game of Life ist ein 0-Player-Game zur Umsetzung der Automaten-Theorie von Stanistaw Marcin Ulam,
entworfen von dem Mathematiker John Conway. Wenige, einfache Regeln fuhren dabei zu verbluffend
komplexem Verhalten.

Regeln

Das Feld ist aufgeteilt in einzelne, quadratische Zellen, die einfach so nebeneinander angeordnet
sind, dass jede Zelle 8 Nachbarn hat (wie auf einem Karo-Papier). Jede Zelle kann entweder lebendig
oder tot sein, dieser Status hangt vom Anfangszustand und dem Zustand der 8 Nachbarn ab, die die
Zelle ,sehen” kann. In jeder Runde (=Generation) zahlt jede Zelle, wie viele ihrer Nachbarn lebendig
ist und andert dann je nach Anzahl den eigenen Lebensstatus nach folgenden Regeln:

e Zellen mit weniger als 2 Nachbarn sterben (an ,Vereinsamung”)
e Zellen mit genau 2 Nachbarn andern ihren Status nicht

e Zellen mit genau 3 Nachbarn werden lebendig

e Zellen mit mehr als 3 Nachbarn sterben (an ,Uberbevélkerung®)

Durch diese Regeln gibt es bestimmte Muster, die statisch sind, wie z.B. (Bild) und Muster, die
periodisch wiederkehren, die wichtigsten darunter sind wohl die Glider (bild)

Vision

Im Rahmen unseres Projektes mochten wir die Funktionsweise von Conway's Game of Life mit Hilfe
einer interaktiven leuchtenden Kunstinstallation erfahrbar machen. Um ein intuitives Verstandnis der
Thematik zu fordern, wollen wir ein manuell verstellbares und programmierbares Display bauen.

Ziele

Feld aus 3×3 Einzelzellen bauen

Interaktivitat durch Hall-Sonde & Magnet am ,Zauberstab“

Aufbau soll cell-based sein: Jede Zelle sieht nur ihre Nachbarn, es gibt also kein grolRes

Programm im Hintergrund, das alle Zellen ansteuert

modulare Aufbauweise: Das Feld soll in verschiedenen Konfigurationen aufgebaut werden

kénnen, um Strukturen verschiedenen Ausmalies darstellen zu kdnnen (daflr idealerweise jede

Zelle einzeln herausnehm- und zusammensteckbar)

¢ das Projekt soll vollstandig dokumentiert und open-source sein

e Nebenziel: Erweiterung der Installation zur Visualisierung komplexerer Strukturen durch
nebenstehenden PC

e Traumziel: wenn Zeit und Resourcen da sind auf ein ca. 20\times20 Feld erweitern

Arbeitsablauf

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://de.wikipedia.org/wiki/Conways_Spiel_des_Lebens
https://de.wikipedia.org/wiki/Automat_(Informatik)

Last update:

2022/04/10 19:54 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649613241

Anfangsiiberlegungen

Zellform: Wir hatten kurz mit dem Gedanken gespielt, die Felder achteckig zu gestalten, da man dort
aber zwangslaufig Zwischenraume hat, die Uberbrickt werden mussen, sind wir doch zu den Ublichen
Quadraten zurlickgekehrt.

lebendig/tot darstellen: Die Urspriingliche Idee war ein Flippdot-Display selbst zu bauen, das
schien in der Planung aber zu groller Aufwand zu werden und auch zu fragil fur die Nutzung durch
Personen, die sich nicht genau damit auskennen, daher haben wir uns dazu entschieden, den
Lebensstatus der Zellen Uber eine LED sichtbar zu machen. Eine leuchtende Zelle symbolisiert also
eine lebendige Zelle, eine nicht leuchtende eine tote.

Welcher Sensor?: Um die Interaktivitat zu gewahrleisten, also direkt am Feld verschiedene
Anfangsbedingungen einstellen zu konnen, brauchen wir eine Art Knopf. Ein simpler Druckknopf in
jeder Zelle schien uns zu unhandlich, gerade bei groReren Feldern, deswegen haben wir uns
letztendlich fur eine Losung mit einer Hall-Sonde (Magnetsensor) in jeder Zelle entschieden, sodass
man den Lebensstatus der Zelle durch Berihrung mit einem ,Zauberstab” (fancy Stab mit Magnet an
der Spitze) geandert werden kann. Weitere Ideen, die wir vor allem auf Grund der Storanfalligkeit
durch auBere Einflisse verworfen haben, waren ein Kapazitatsberihrungssensor und weiter
BerUhrungssensoren, die Uber die Erschutterung einer kleinen Feder ausgelést werden.

Zelldesign

Jede Zelle besteht aus einem 3D-gedruckten Zellkérper ,

der so gestaltet ist, dass man die Zellen einfach PERHRttion
ineinander schieben kann und somit ein solides Feld
erhalt. darin mussen die Hall-Sonde, eine LED, ein
Arduino Nano und einiges an Kabeln Platz finden,
deswegen haben wir die Zellkdrper 7cm tief gedruckt.
Die LED und die Hall-Sonde werden im ebenfalls 3D-
gedruckten Deckel befestigt (s. Bild rechts), damit das
Licht von auBen gut sichtbar ist und alle Zellen
einheitlich leuchten und ebenso einheitlich auf den
Magneten reagieren. AuBerdem gibt es Aussparungen
fur die Steckverbindungen der Kabel, die die
Kommunikation der Zellen ermdéglicht, im Deckel, sodass
diese gut sichtbar sind und auch im
zusammengesteckten Zustand leicht geandert werden
kénnen. Dies hat sowohl den praktischen Grund, dass es
wohl die einfachst mégliche Losung der Kommunikation
ist, als auch padagogische, denn so kann man im
laufenden Betrieb eine Verbindung unterbrechen und
darUber demonstrieren, wie die Zellen einander ,.sehen”.
Abgedeckt ist die 3d-gedruckte
Deckelrahmenkonstruktion mit milchigem Acrylglas, das
mit dem Laser-Cutter geschnitten wurde. Die Rlckseite ist mit einem ebenfalls 3D-gedruckten Deckel
verschlossen, in dem Aussparungen fur die Stromverbindung (und Taktgebung) sind.

Die 3D-gedruckten Teile wurden mit einem SLA-Drucker gedruckt, da dieser an sich genauer drucken
kann als ein FDM-Drucker. Dadurch, dass die Teile nach dem Drucken aber gehartet werden mussen,
besteht bei unseren recht dunnen Wanden eine Neigung zum Neigen. Deswegen drucken wir die Teile

i R AT A

P AR dingen
Zellkarper,

i

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 3/9 Hintergrund

doch lieber mit einem FDM-Drucker.

Software

Jede Zelle tragt das gleiche kleine Programm in sich, dass im Prinzip nur die Anzahl der lebendigen
Nachbarn zahlen und danach entscheiden muss, wie ihr Lebensstatus sein soll. Das grofte Problem
hierbei ist die Taktung, denn alle Zellen mussen zunachst den Status ihrer Nachbarn auslesen, bevor
sie ihren eigenen andern, ansonsten wirde es zu Fehlern kommen. Recht leicht Idsbar ware diese
Herausforderung, wenn man alle benachbarten Zellen mit jeweils zwei Kabeln verbinden wurde. Dann
wirde an einem Zelle A ihren Lebensstatus schreiben, was Zelle B lesen kdnnte und an dem anderen
umgekehrt. Das kann allerdings schnell zu einem riesigen Kabelsalat fihren und die Anzahl der Pins
an den Nanos warde nicht reichen, daher wollten wir eine Losung, in der zwischen zwei benachbarten
Zellen immer nur ein Kabel verlauft. Dafur durfen zwei benachbarte Zellen nicht versuchen,
gleichzeitig ihren Lebensstatus Uber das gleiche Kabel zu vermitteln.

Unsere erste Idee war, die Zellen im Schachbrettmuster auslesen zu lassen, also in zwei Gruppen
(angeordnet wie schwarze und weiRe Felder auf einem Schachbrett), in denen sich die Zellen mit
lesen und schreiben abwechseln. Allerdings lesen sich die diagonal zueinander liegenden Zellen so
immer noch gleichzeitig aus, mit diesem Ansatz funktioniert es also nicht.

Die zweite und auch verwendete Idee ist, die Arduinos in acht Schritten in einer Art ,,Uhr” ihre
Nachbarn auslesen zu lassen. Dafur lesen zuerst alle Arduinos den Nachbarn aus, der Uber ihnen
angeordnet ist und schreiben dann logischerweise auf den passenden Nachbarn, also den, der unter
ihnen angeordnet ist. Dann geht es im Uhrzeigersinn weiter: als nachstes wird rechts oben gelesen
und links unten geschrieben und so weiter, bis die Uhr einmal herum ist und alle acht Nachbarn
ausgelesen und beschrieben wurden. Fur diese Umsetzung ist eine zentrale Taktung notwendig, damit
wirklich alle Zellen genau gleichzeitig das gleiche tun. Dafur kam die Idee auf, einen zentralen
Taktgeber-Arduino zu verwenden, der Uber die analog-Pins die verschiedenen Schritte uber
unterschiedlich hohe Spannung angeben sollte. Das erwies sich in der Umsetzung als komplizierter als
gedacht und auch als komplizierter als nétig. Es reicht namlich vollig, einen Taktgeber zu haben, der
die ganze Zeit Impulse an alle Zellen-Arduinos schickt und diese dann zahlen zu lassen.

Mdchte man mit dem Magneten den Lebensstatus der Zellen andern, also eine neue
Startkonfiguration setzen, so muss dieser Prozess unterbrochen werden. Dafur gibt es einen
einfachen Kippschalter, der entweder auf ,automatik” (das Programm lauft wie oben beschrieben
durch) oder auf ,manuell” geschaltet sein kann. Schaltet man auf manuell um, so wird der aktuelle
Taktungsdurchlauf noch abgeschlossen, danach sendet der Taktgeber aber keine weiteren Signale
mehr. In diesem Zustand kann man nun mit dem Magneten den Lebensstatus der Zellen verandern.
In dem manuellen Modus kann man aulerdem Uber einen Druckknopf einzeln die Generationen
durchgehen, was nutzlich zum erklaren der grundsatzlichen Regeln ist.

Der Code der Zellen besteht also grob aus folgenden Abschnitten:

1. Mdoglichkeit, mit Magnet den Status zu andern
2. Nachbarn zahlen (nach ,Uhr")
3. je nach Anzahl der Nachbarn Uber eigenen Lebensstatus entscheiden

FUr Details und Code des Taktgebers siehe den ordentlich auskommentierten Code.

Tipp: Speist man mehreren verbundenen Arduinos nur Uber eine Verbindung zum Laptop, so kann es
passieren, dass die Stromstarke zu gering ist und merkwurdiges, unerklarliches Verhalten entsteht,
also die Stromversorgung besser Uber ein Netzteil regeln.

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code
https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code

Last update:

2022/04/10 19:54 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649613241

Ergebnis

Die fertige Zelle sieht am Ende wie folgt aus:

Im Idealfall sollten deutlich kiirzere Kabel verwendet werden, die dann an den Arduino gel6tet
werden, damit die Zellkdrper nicht so vollgestopft werden. Darauf haben wir bis jetzt allerdings
verzichtet, damit alle Materialien wiederverwendet werden kdnnen. Ein
komplettes 3x3 Feld konnten wir noch nicht testen, da dafur noch
Materialien fehlen, aber ein Test auf einem Steckbrett hat gezeigt, dass

alles grundsatzlich funktioniert, wie es soll.

Materialien

Algemein benodtigte Materialien:
Beliebiger Arduino (auch fur Stromversorgung verantwortlich)|1

Kippschalter

Druckknopf

Benotigte Materialien pro Zelle:

Arduino nano 1

LEDs 1

Halleffekt-Sensoren 1

Kabel:

male-male (Kommunikation) 4 (ein 3x3 Feld braucht insgesammt nur 27)
Kommunikations anschlisse (x-female)|8

Kabel fur interne Elektronik 3 (Hallsonde) + 2 (LED)
Strom Kabel 2

Takt Kabel 1

Code

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47

5/9 Hintergrund

CellGenome.ino

#define LED 11

Gesteuert durch interne Logik
#define sensorPIN A4

#define sensorVALUE analogRead(A4)
#define stepPIN A5

durch externe Logik

#define readPIN (stepSTATE+3)%8+2

Jeder Arduino nano, der in eine Zelle verbaut ist, bendtigt folgenden Code:

//LED/STATUS pin dieser Zelle.
//pin zur Senor-Auswerung

//sensor wert
//pin zur koordinierung. Gesteuert

//formel zur berechnung der Pins,

an denen die Nachbarzellen gelesen werden

#define writePIN stepSTATE+1

//formel zur berechnung der Pins,

an denen Nachbarzelen angeschrieben werden

#define stepINPUT digitalRead(A5)
int stepSTATE = 0O;

den Lese/Schreibe Zyklus

boolean stepTOGGLE = false;

int jobSTATE = 0;

Lese/Schreibe Zyklus

boolean 1iveSTATE
int 1iveNEIGHBOUR
Zellen

false;
0;

const int threshold = 450;
anschlagen soll
boolean sensorTOGGLE = false;

void setup() {
//Serial.begin(9600);
pinMode (LED, OUTPUT) ;
pinMode(sensorPIN, INPUT);
wird
pinMode (stepPIN, INPUT);
Zyklus reinkommt
pinMode (12, OUTPUT) ;
pinMode (12, LOW);
}

void loop() {
digitalWrite(LED, liveSTATE) ;

//extern angegebener Counter fir
//toggle fur den stepSTATE

//interner counter fiur den

//"Lebens"status dieser Zelle
//Anzahl der "Lebenden" Nachbar

//Grenzwert ab dem der Sensor

//"sensor zustand"

//LED Pin
//Pin wo die hall-sonde ausgelesen

//Pin wo durch der Lese/schreibe

//Die LED

spiegelt den Lebensstatus der Zelle wieder

17 (stepTOGGLE == false && stepINPUT ==

true){ //wurde

bis jetzt noch kein genarationsimpuls regestriert, geht aber grad einer

élin

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=0

Last update:

2022/04/10 19:54 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649613241

stepTOGGLE = true; //wird
vermerkt das ein impuls eingeht
stepSTATE += 1; //und
eine Generation hochgegangen
}
17 (stepTOGGLE == true && stepINPUT == false)/ //ist
vermerkt das ein Impuls registriert wurde, liegt aber keiner an
stepTOGGLE = false; //wird
dies vermerkt
}
17 (stepSTATE == 0){ //geht die

Zelle nicht die genarationen durch, kann mit dem magneten der status
geandert werden:

1T (sensorVALUE <= threshold && sensorTOGGLE == false){ //Ist der
Magnet nah genug dran und wars bis jetzt aber noch nicht

sensorTOGGLE = true; //wird
vermerkt das der Magnet nah genug dran ist
1iveSTATE = !1iveSTATE; //der

Lebenstatus geandert
Serial .println(sensorVALUE) ;

}
it (sensorVALUE > threshold) | //1ist der
Magnet wieder weiter weg
sensorTOGGLE = false; //wird
vermerkt das grad kein Magnet da ist
}

}

1T (stepSTATE = 0 && stepSTATE < 9 &4 jobSTATE == stepSTATE - 1)1

//werden die schritte durchgegangen:

17 (stepSTATE == 1)1{
//wird erst gecheckt ob dies der erste schritt ist

1liveNEIGHBOUR = 0O;

//1ist dies der fall wird der Nachbar counter auf null gesetzt

}

pinMode (writePIN, OQUTPUT) ;
//€es wird der Erste pin in der folge als out-put definiert

digitalWrite(writePIN, LliveSTATE) ;
//und dariber der lebensstatus an den entsprechenden Nachbarn
vermittelt

pinMode (readPIN, OUTPUT) ;

digitalWrite(readPIN,6 LOW) ;
//der entsprechend gegeniuberliegende pin wird resetet,

pinMode (readPIN, INPUT) ;
//als input definiert

1iveNEIGHBOUR += digitalRead(readPIN) ;
//und sofern dort eine lebende nachbarzelle entdeckt wird, wird dies
vermerkt

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 7/9 Hintergrund

JObSTATE++;

//es wird vermerkt das der erste schritt fertig ist
Serial.print(1liveNEIGHBOUR) ;
Serial.print(" Nachbarnzahl, die nach dem pin ");
Serial .print(readPIN);
Serial.println(" gelesen wurde");

}
else 17 (stepSTATE ==9 && jObSTATE == stepSTATE - 1){ //wenn
angefordert und fertig mit Job 2 werden die Regeln angewendet:
it (liveSTATE == false && 1iveNEIGHBOUR == 3){ //tote
Zelle mit genau drei Lebenden Nachbarn
LliveSTATE = true; //wird
lebendig
}
else 1if (1liveSTATE == true && 1iveNEIGHBOUR < 2){ //Lebende
Zelle mit weniger als zwei Lebenden Nachbarn
liveSTATE = false; //Stirbt
}
else 1if (liveSTATE == true && 1liveNEIGHBOUR = 3){ //Lebende
Zelle mit mehr als 3 Lebenden Nachbarn
1liveSTATE = false; //Stirbt
}
Serial.println();
Serial.print("Gesammt zahl lebender Nachbarn:");
Serial .println(1liveNEIGHBOUR) ;
Serial .println();
JObSTATE = 0; //Fertig
mit allen Jobs,
stepSTATE = 0O; //wartet
auf erste Aufgabe
}

Der Taktgebende Arduino wird mit folgendem Code bespielt:

controllpanell.ino

#define button 8 //Der druckknopf
flir's schritweise fortschreiten der Genarationen wird an diesen Pin
angeschlossen

#define Switch 7 //Der Kippschalter,

mit dem zwischen "Manuell" und "Automatisch" gewechselt werden kann,
wird an diesen Pin angeschlossenangeschlossen

#define PulseQut A5 //0utput Pin fur die
Pulse
#define Delay 5 //verzoégerung zwischen

den einzelnen Pulsen (ein Genarationswechsel braucht 16*Delay

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=1

Last update:

2022/04/10 19:54 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649613241

millisekunden)

boolean stepTOGGLE = false //toggle mit dem ein
Knopfdruck eine funktion blof einmal ausfiuhrt, bis der knopf das
nachste mal gedriickt wird

void setup
Serial.begin (9600
pinMode (PulseOut, OUTPUT
pinMode (button, INPUT
pinMode (7, INPUT

void loop
if(digitalRead(Switch true //wenn der Schalter
umgelegt ist
for (int i 1; 1 9; i //wird acht mal

digitalWrite(PulseOut, HIGH //der Takt pin an,
delay(Delay //nach kurzem Delay
digitalWrite(PulseOut, LOW //aus geschaltet.
delay(Delay //dies wird nach

kurzem delay wiederholt

else //ist der schalter
nicht umgelegt
17 (stepTOGGLE false button true //wird nach der selben

Logik wie im code "CellGenome" getestet ob gerade ein Signal
eingegangen ist (der knopf gedrickt wurde)

stepTOGGLE = true

for (int 1 =1; i 9, 1 //und 8 impulse mit
entsprechender lange und entsprechenden Pausen abgegeben.

Serial.println(i

digitalWrite(PulseOut,6 HIGH

delay(Delay

digitalWrite(PulseOut, LOW

delay(Delay

17 (stepTOGGLE true button false
stepTOGGLE = false

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 9/9 Hintergrund

Verbesserungsideen

e Kabel anders ldsen (groler Kabelsalat)
e nicht jede Zelle mit einem Nano, sondern eigenen Chips designen
e Taktung eleganter l6sen (z.B. mit interrupt-Funktion der Nanos)

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link: —
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649613241 -"':

Last update: 2022/04/10 19:54

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light&rev=1649613241

	[Hintergrund]
	[Hintergrund]
	Hintergrund
	Vision
	Ziele
	Arbeitsablauf
	Anfangsüberlegungen
	Zelldesign
	Software

	Ergebnis
	Materialien
	Code
	Verbesserungsideen

