2026/01/29 04:33 1/9 Hintergrund

Hintergrund

Was ist Conways Game of Life?

Game of Life ist ein 0-Player-Game zur Umsetzung der Automaten-Theorie von Stanistaw Marcin Ulam,
entworfen von dem Mathematiker John Conway. Wenige, einfache Regeln fuhren dabei zu verbliffend
komplexem Verhalten.

Regeln

Das Feld ist aufgeteilt in einzelne, quadratische Zellen, die einfach so nebeneinander angeordnet
sind, dass jede Zelle 8 Nachbarn hat (wie auf einem Karo-Papier). Jede Zelle kann entweder lebendig
oder tot sein, dieser Status hangt vom Anfangszustand und dem Zustand der 8 Nachbarn ab, die die
Zelle ,sehen” kann. In jeder Runde (=Generation) zahlt jede Zelle, wie viele ihrer Nachbarn lebendig
ist und andert dann je nach Anzahl den eigenen Lebensstatus nach folgenden Regeln:

e Zellen mit weniger als 2 Nachbarn sterben (an ,Vereinsamung”)
e Zellen mit genau 2 Nachbarn andern ihren Status nicht

e Zellen mit genau 3 Nachbarn werden lebendig

e Zellen mit mehr als 3 Nachbarn sterben (an ,Uberbevélkerung®)

Durch diese Regeln gibt es bestimmte Muster, die statisch sind, wie z.B.

und Muster, die periodisch wiederkehren, die wichtigsten darunter sind wohl die Glider (bild)
Daraus lassen sich faszinierende, komplexe Strukturen bauen, wie zum Beispiel hier oder hier.

Vision

Im Rahmen unseres Projektes mdchten wir die Funktionsweise von Conway's Game of Life mit Hilfe
einer interaktiven leuchtenden Kunstinstallation erfahrbar machen. Um ein intuitives Verstandnis der
Thematik zu fordern, wollen wir ein manuell verstellbares und programmierbares Display bauen.

Ziele

e Feld aus 3×3 Einzelzellen bauen

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://de.wikipedia.org/wiki/Conways_Spiel_des_Lebens
https://de.wikipedia.org/wiki/Automat_(Informatik)
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2122%3Agame_of_light&media=ws2122:conway_stable.png
https://www.youtube.com/watch?v=xP5-iIeKXE8&list=LL&index=17
https://www.youtube.com/watch?v=C2vgICfQawE&t=187s

Last update:

2022/04/10 20:12 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649614345

e Interaktivitat durch Hall-Sonde & Magnet am ,,Zauberstab“

e Aufbau soll cell-based sein: Jede Zelle sieht nur ihre Nachbarn, es gibt also kein groRes
Programm im Hintergrund, das alle Zellen ansteuert

¢ modulare Aufbauweise: Das Feld soll in verschiedenen Konfigurationen aufgebaut werden
kénnen, um Strukturen verschiedenen Ausmalies darstellen zu kdnnen (daflr idealerweise jede
Zelle einzeln herausnehm- und zusammensteckbar)

e das Projekt soll vollstandig dokumentiert und open-source sein

¢ Nebenziel: Erweiterung der Installation zur Visualisierung komplexerer Strukturen durch
nebenstehenden PC

¢ Traumziel: wenn Zeit und Resourcen da sind auf ein ca. 20\times20 Feld erweitern

Arbeitsablauf

Anfangsuberlegungen

Zellform: Wir hatten kurz mit dem Gedanken gespielt, die Felder achteckig zu gestalten, da man dort
aber zwangslaufig Zwischenraume hat, die Uberbrickt werden muissen, sind wir doch zu den Ublichen
Quadraten zuruckgekehrt.

lebendig/tot darstellen: Die Urspringliche Idee war ein Flippdot-Display selbst zu bauen, das
schien in der Planung aber zu grolSer Aufwand zu werden und auch zu fragil fur die Nutzung durch
Personen, die sich nicht genau damit auskennen, daher haben wir uns dazu entschieden, den
Lebensstatus der Zellen Uber eine LED sichtbar zu machen. Eine leuchtende Zelle symbolisiert also
eine lebendige Zelle, eine nicht leuchtende eine tote.

Welcher Sensor?: Um die Interaktivitat zu gewahrleisten, also direkt am Feld verschiedene
Anfangsbedingungen einstellen zu kénnen, brauchen wir eine Art Knopf. Ein simpler Druckknopf in
jeder Zelle schien uns zu unhandlich, gerade bei groReren Feldern, deswegen haben wir uns
letztendlich fUr eine Losung mit einer Hall-Sonde (Magnetsensor) in jeder Zelle entschieden, sodass
man den Lebensstatus der Zelle durch Beruhrung mit einem ,Zauberstab” (fancy Stab mit Magnet an
der Spitze) gedandert werden kann. Weitere Ideen, die wir vor allem auf Grund der Storanfalligkeit
durch dulRere Einflisse verworfen haben, waren ein Kapazitatsberihrungssensor und weiter
Berthrungssensoren, die Uber die Erschutterung einer kleinen Feder ausgelost werden.

Zelldesign

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:33

2026/01/29 04:33 3/9 Hintergrund

Jede Zelle besteht aus einem 3D-gedruckten Zellkdrper ,

der so gestaltet ist, dass man die Zellen einfach

ineinander schieben kann und somit ein solides Feld DERtBeftion
erhalt. darin mussen die Hall-Sonde, eine LED, ein

Arduino Nano und einiges an Kabeln Platz finden, .
deswegen haben wir die Zellkdrper 7cm tief gedruckt. Halferung fuy LED
Die LED und die Hall-Sonde werden im ebenfalls 3D- .
gedruckten Deckel befestigt (s. Bild rechts), damit das
Licht von auBen gut sichtbar ist und alle Zellen
einheitlich leuchten und ebenso einheitlich auf den
Magneten reagieren. AuBerdem gibt es Aussparungen
fur die Steckverbindungen der Kabel, die die
Kommunikation der Zellen ermdglicht, im Deckel, sodass
diese gut sichtbar sind und auch im
zusammengesteckten Zustand leicht geandert werden
konnen. Dies hat sowohl den praktischen Grund, dass es
wohl die einfachst mégliche Losung der Kommunikation
ist, als auch padagogische, denn so kann man im
laufenden Betrieb eine Verbindung unterbrechen und
dartber demonstrieren, wie die Zellen einander ,sehen”.
Abgedeckt ist die 3d-gedruckte
Deckelrahmenkonstruktion mit milchigem Acrylglas, das
mit dem Laser-Cutter geschnitten wurde. Die Ruckseite
ist mit einem ebenfalls 3D-gedruckten Deckel verschlossen, in dem Aussparungen fur die
Stromverbindung (und Taktgebung) sind.

Die 3D-gedruckten Teile wurden mit einem SLA-Drucker gedruckt, da dieser an sich genauer drucken
kann als ein FDM-Drucker. Dadurch, dass die Teile nach dem Drucken aber gehartet werden mussen,
besteht bei unseren recht dinnen Wanden eine Neigung zum Neigen. Deswegen drucken wir die Teile
doch lieber mit einem FDM-Drucker.

P R dingen
Zellkdrper,

FeA Brsmpo fur

Software

Jede Zelle tragt das gleiche kleine Programm in sich, dass im Prinzip nur die Anzahl der lebendigen
Nachbarn zahlen und danach entscheiden muss, wie ihr Lebensstatus sein soll. Das grofte Problem
hierbei ist die Taktung, denn alle Zellen mussen zunachst den Status ihrer Nachbarn auslesen, bevor
sie ihren eigenen andern, ansonsten wirde es zu Fehlern kommen. Recht leicht Idsbar ware diese
Herausforderung, wenn man alle benachbarten Zellen mit jeweils zwei Kabeln verbinden wirde. Dann
wirde an einem Zelle A ihren Lebensstatus schreiben, was Zelle B lesen kdnnte und an dem anderen
umgekehrt. Das kann allerdings schnell zu einem riesigen Kabelsalat fihren und die Anzahl der Pins
an den Nanos wurde nicht reichen, daher wollten wir eine Ldsung, in der zwischen zwei benachbarten
Zellen immer nur ein Kabel verlauft. Dafur durfen zwei benachbarte Zellen nicht versuchen,
gleichzeitig ihren Lebensstatus Uber das gleiche Kabel zu vermitteln.

Unsere erste Idee war, die Zellen im Schachbrettmuster auslesen zu lassen, also in zwei Gruppen
(angeordnet wie schwarze und weiRe Felder auf einem Schachbrett), in denen sich die Zellen mit
lesen und schreiben abwechseln. Allerdings lesen sich die diagonal zueinander liegenden Zellen so
immer noch gleichzeitig aus, mit diesem Ansatz funktioniert es also nicht.

Die zweite und auch verwendete Idee ist, die Arduinos in acht Schritten in einer Art ,,Uhr” ihre
Nachbarn auslesen zu lassen. Dafur lesen zuerst alle Arduinos den Nachbarn aus, der Uber ihnen
angeordnet ist und schreiben dann logischerweise auf den passenden Nachbarn, also den, der unter
ihnen angeordnet ist. Dann geht es im Uhrzeigersinn weiter: als nachstes wird rechts oben gelesen

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Last update:

2022/04/10 20:12 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649614345

und links unten geschrieben und so weiter, bis die Uhr einmal herum ist und alle acht Nachbarn
ausgelesen und beschrieben wurden. Flir diese Umsetzung ist eine zentrale Taktung notwendig, damit
wirklich alle Zellen genau gleichzeitig das gleiche tun. Dafur kam die Idee auf, einen zentralen
Taktgeber-Arduino zu verwenden, der Uber die analog-Pins die verschiedenen Schritte tuber
unterschiedlich hohe Spannung angeben sollte. Das erwies sich in der Umsetzung als komplizierter als
gedacht und auch als komplizierter als nétig. Es reicht namlich vollig, einen Taktgeber zu haben, der
die ganze Zeit Impulse an alle Zellen-Arduinos schickt und diese dann zahlen zu lassen.

Mdchte man mit dem Magneten den Lebensstatus der Zellen andern, also eine neue
Startkonfiguration setzen, so muss dieser Prozess unterbrochen werden. Dafur gibt es einen
einfachen Kippschalter, der entweder auf ,automatik” (das Programm lauft wie oben beschrieben
durch) oder auf ,manuell” geschaltet sein kann. Schaltet man auf manuell um, so wird der aktuelle
Taktungsdurchlauf noch abgeschlossen, danach sendet der Taktgeber aber keine weiteren Signale
mehr. In diesem Zustand kann man nun mit dem Magneten den Lebensstatus der Zellen verandern.
In dem manuellen Modus kann man aulSerdem Uber einen Druckknopf einzeln die Generationen
durchgehen, was nutzlich zum erklaren der grundsatzlichen Regeln ist.

Der Code der Zellen besteht also grob aus folgenden Abschnitten:

1. Mdoglichkeit, mit Magnet den Status zu andern
2. Nachbarn zahlen (nach ,Uhr")
3. je nach Anzahl der Nachbarn Uber eigenen Lebensstatus entscheiden

FUr Details und Code des Taktgebers siehe den ordentlich auskommentierten Code.

Tipp: Speist man mehreren verbundenen Arduinos nur Uber eine Verbindung zum Laptop, so kann es
passieren, dass die Stromstarke zu gering ist und merkwurdiges, unerklarliches Verhalten entsteht,
also die Stromversorgung besser Uber ein Netzteil regeln.

Ergebnis

Die fertige Zelle sieht am Ende wie folgt aus:

Im Idealfall sollten deutlich kiirzere Kabel verwendet werden, die dann an den Arduino gelétet
werden, damit die Zellkérper nicht so vollgestopft werden. Darauf haben wir bis jetzt allerdings

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:33

https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code
https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code

2026/01/29 04:33 5/9 Hintergrund

verzichtet, damit alle Materialien wiederverwendet werden kénnen. Ein
komplettes 3x3 Feld konnten wir noch nicht testen, da daflr noch
Materialien fehlen, aber ein Test auf einem Steckbrett hat gezeigt, dass

alles grundsatzlich funktioniert, wie es soll.

Materialien

Algemein benétigte Materialien:
Beliebiger Arduino (auch fur Stromversorgung verantwortlich)|1
Kippschalter
Druckknopf 1
Benotigte Materialien pro Zelle:
Arduino nano 1
LEDs
Halleffekt-Sensoren
Kabel:
male-male (Kommunikation) 4
Kommunikations anschlusse (x-female)|8
Kabel fur interne Elektronik 3 (Hallsonde) + 2 (LED)
2
1

[y

(ein 3x3 Feld braucht insgesammt nur 27)

Strom Kabel
Takt Kabel

Code

Jeder Arduino nano, der in eine Zelle verbaut ist, bendtigt folgenden Code:

CellGenome.ino

#define LED 11 //LED/STATUS pin dieser Zelle.
Gesteuert durch interne Logik

#define sensorPIN A4 //pin zur Senor-Auswerung

#define sensorVALUE analogRead(A4) //sensor wert

#define stepPIN A5 //pin zur koordinierung. Gesteuert

durch externe Logik

#define readPIN (stepSTATE+3)%8+2 //formel zur berechnung der Pins,
an denen die Nachbarzellen gelesen werden
#define writePIN stepSTATE+1 //formel zur berechnung der Pins,
an denen Nachbarzelen angeschrieben werden

#define stepINPUT digitalRead(A5)
int stepSTATE = 0O; //extern angegebener Counter fir
den Lese/Schreibe Zyklus

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=0

Last update:
2022/04/10 20:12

boolean stepTOGGLE = false; //toggle fir den stepSTATE
int jobSTATE = 0O; //interner counter fir den
Lese/Schreibe Zyklus

ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649614345

boolean 1iveSTATE = false; //"Lebens"status dieser Zelle
int 1iveNEIGHBOUR = 0; //Anzahl der "Lebenden" Nachbar
Zellen

const int threshold = 450; //Grenzwert ab dem der Sensor
anschlagen soll

boolean sensorTOGGLE = false; //"sensor zustand"

void setup() |
//Serial.begin(9600) ;

pinMode (LED, OUTPUT) ; //LED Pin

pinMode(sensorPIN, INPUT); //Pin wo die hall-sonde ausgelesen
wird

pinMode (stepPIN, INPUT); //Pin wo durch der Lese/schreibe

Zyklus reinkommt
pinMode (12, OUTPUT) ;
pinMode (12, LOW);

}

void loop() {
digitalWrite(LED, 1iveSTATE); //Die LED
spiegelt den Lebensstatus der Zelle wieder

17(stepTOGGLE == false && stepINPUT == true){ //wurde
bis jetzt noch kein genarationsimpuls regestriert, geht aber grad einer
ein
stepTOGGLE = true; //wird
vermerkt das ein impuls eingeht
stepSTATE += 1; //und
eine Generation hochgegangen
}
17 (stepTOGGLE == true && stepINPUT == false) //ist
vermerkt das ein Impuls registriert wurde, liegt aber keiner an
stepTOGGLE = false; //wird
dies vermerkt
}
1T (stepSTATE == 0){ //geht die

Zelle nicht die genarationen durch, kann mit dem magneten der status
geandert werden:
if (sensorVALUE <= threshold && sensorTOGGLE == false){ //Ist der
Magnet nah genug dran und wars bis jetzt aber noch nicht
sensorTOGGLE = true; //wird
vermerkt das der Magnet nah genug dran ist

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:33

2026/01/29 04:33 7/9 Hintergrund

1liveSTATE = !1iveSTATE; //der
Lebenstatus geandert
Serial.println(sensorVALUE) ;

}
if (sensorVALUE > threshold){ //1ist der
Magnet wieder weiter weg
sensorTOGGLE = false; //wird
vermerkt das grad kein Magnet da ist
}

}

1T (stepSTATE > 0 && stepSTATE < 9 && jobSTATE == stepSTATE - 1){
//werden die schritte durchgegangen:
1T (stepSTATE == 1)1
//wird erst gecheckt ob dies der erste schritt ist
1iveNEIGHBOUR = 0;
//1ist dies der fall wird der Nachbar counter auf null gesetzt
}
pinMode (writePIN,OUTPUT) ;
//es wird der Erste pin in der folge als out-put definiert
digitalWrite(writePIN, 1iveSTATE) ;
//und dariuber der lebensstatus an den entsprechenden Nachbarn
vermittelt
pinMode (readPIN, OUTPUT) ;
digitalWrite(readPIN,LOW) ;
//der entsprechend gegeniberliegende pin wird resetet,
pinMode (readPIN, INPUT) ;
//als input definiert
1liveNEIGHBOUR += digitalRead(readPIN);
//und sofern dort eine lebende nachbarzelle entdeckt wird, wird dies
vermerkt
JObSTATE++;
//es wird vermerkt das der erste schritt fertig ist
Serial.print(liveNEIGHBOUR) ;
Serial.print(" Nachbarnzahl, die nach dem pin ");
Serial.print(readPIN);
Serial.println(" gelesen wurde");

}
else 17 (stepSTATE ==9 && jobSTATE == stepSTATE - 1){ //wenn
angefordert und fertig mit Job 2 werden die Regeln angewendet:
1if (1iveSTATE == false && 1iveNEIGHBOUR == 3){ //tote
Zelle mit genau drei Lebenden Nachbarn
1liveSTATE = true; //wird
lebendig
}
else 1f (1iveSTATE == true && 1iveNEIGHBOUR < 2){ //Lebende
Zelle mit weniger als zwei Lebenden Nachbarn
1liveSTATE = false; //Stirbt
}

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

Last update:

2022/04/10 20:12 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649614345

else if (1iveSTATE == true && 1iveNEIGHBOUR = 3){ //Lebende
Zelle mit mehr als 3 Lebenden Nachbarn
1liveSTATE = false; //Stirbt
}

Serial.println();

Serial.print("Gesammt zahl lebender Nachbarn:");
Serial .println(1liveNEIGHBOUR) ;

Serial .println();

JObSTATE = 0; //Fertig
mit allen Jobs,

stepSTATE = 0O; //wartet
auf erste Aufgabe

}

Der Taktgebende Arduino wird mit folgendem Code bespielt:

controllpanell.ino

#define button 8 //Der druckknopf
flir's schritweise fortschreiten der Genarationen wird an diesen Pin
angeschlossen

#define Switch 7 //Der Kippschalter,

mit dem zwischen "Manuell" und "Automatisch" gewechselt werden kann,
wird an diesen Pin angeschlossenangeschlossen

#define PulseOQut A5 //0utput Pin fir die
Pulse

#define Delay 5 //verzégerung zwischen
den einzelnen Pulsen (ein Genarationswechsel braucht 16*Delay
millisekunden)

boolean stepTOGGLE = false; //toggle mit dem ein

Knopfdruck eine funktion bloB einmal ausfihrt, bis der knopf das
nachste mal gedrickt wird

void setup() {
Serial . begin(9600);
pinMode (PulseOut, OUTPUT) ;
pinMode (button, INPUT);
pinMode (7, INPUT);

}
void loop() {
if(digitalRead(Switch)== true){ //wenn der Schalter
umgelegt ist
for (int i = 1; 1 <= 9; i++){ //wird acht mal
digitalWrite(PulseOut, HIGH) ; //der Takt pin an,

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:33

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=1

2026/01/29 04:33 9/9 Hintergrund

delay(Delay //nach kurzem Delay
digitalWrite(PulseOut, LOW //aus geschaltet.
delay(Delay //dies wird nach

kurzem delay wiederholt

//1ist der schalter
nicht umgelegt
stepTOGGLE false button true //wird nach der selben
Logik wie im code "CellGenome" getestet ob gerade ein Signal
eingegangen ist (der knopf gedrickt wurde)
stepTOGGLE = true
int i 11 9, 1 //und 8 impulse mit
entsprechender lange und entsprechenden Pausen abgegeben.
Serial .println(i
digitalWrite(PulseOut,6 HIGH
delay(Delay
digitalWrite(PulseOut, LOW
delay(Delay

stepTOGGLE true button false
stepTOGGLE false

Verbesserungsideen

e Kabel anders |6sen (groBer Kabelsalat)
e nicht jede Zelle mit einem Nano, sondern eigenen Chips designen
e Taktung eleganter l6sen (z.B. mit interrupt-Funktion der Nanos)

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link: %
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649614345 -"':

Last update: 2022/04/10 20:12

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light&rev=1649614345

	[Hintergrund]
	[Hintergrund]
	Hintergrund
	Vision
	Ziele
	Arbeitsablauf
	Anfangsüberlegungen
	Zelldesign
	Software

	Ergebnis
	Materialien
	Code
	Verbesserungsideen

