2026/01/29 04:47 1/9 Hintergrund

Hintergrund

Was ist Conways Game of Life?

Game of Life ist ein 0-Player-Game zur Umsetzung der Automaten-Theorie von Stanistaw Marcin Ulam,
entworfen von dem Mathematiker John Conway. Wenige, einfache Regeln fuhren dabei zu verbluffend
komplexem Verhalten.

Regeln

Das Feld ist aufgeteilt in einzelne, quadratische Zellen, die einfach so nebeneinander angeordnet
sind, dass jede Zelle 8 Nachbarn hat (wie auf einem Karo-Papier). Jede Zelle kann entweder lebendig
oder tot sein, dieser Status hangt vom Anfangszustand und dem Zustand der 8 Nachbarn ab, die die
Zelle ,sehen” kann. In jeder Runde (=Generation) zahlt jede Zelle, wie viele ihrer Nachbarn lebendig
ist und andert dann je nach Anzahl den eigenen Lebensstatus nach folgenden Regeln:

e Zellen mit weniger als 2 Nachbarn sterben (an ,Vereinsamung”)
e Zellen mit genau 2 Nachbarn andern ihren Status nicht

e Zellen mit genau 3 Nachbarn werden lebendig

e Zellen mit mehr als 3 Nachbarn sterben (an ,Uberbevélkerung®)

Durch diese Regeln gibt es bestimmte Muster, die statisch sind, wie z.B. m und Muster,

die periodisch wiederkehren, die wichtigsten darunter sind wohl die Glider H
Daraus lassen sich faszinierende, komplexe Strukturen bauen, wie zum Beispiel hier oder hier.

Vision

Im Rahmen unseres Projektes mochten wir die Funktionsweise von Conway's Game of Life mit Hilfe
einer interaktiven leuchtenden Kunstinstallation erfahrbar machen. Um ein intuitives Verstandnis der
Thematik zu fordern, wollen wir ein manuell verstellbares und programmierbares Display bauen.

Ziele

e Feld aus 3×3 Einzelzellen bauen

e Interaktivitat durch Hall-Sonde & Magnet am ,,Zauberstab“

¢ Aufbau soll cell-based sein: Jede Zelle sieht nur ihre Nachbarn, es gibt also kein groRes
Programm im Hintergrund, das alle Zellen ansteuert

e modulare Aufbauweise: Das Feld soll in verschiedenen Konfigurationen aufgebaut werden
kénnen, um Strukturen verschiedenen Ausmalies darstellen zu kdnnen (daflr idealerweise jede
Zelle einzeln herausnehm- und zusammensteckbar)

e das Projekt soll vollstandig dokumentiert und open-source sein

e Nebenziel: Erweiterung der Installation zur Visualisierung komplexerer Strukturen durch
nebenstehenden PC

¢ Traumziel: wenn Zeit und Resourcen da sind auf ein ca. 20\times20 Feld erweitern

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://de.wikipedia.org/wiki/Conways_Spiel_des_Lebens
https://de.wikipedia.org/wiki/Automat_(Informatik)
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2122%3Agame_of_light&media=ws2122:conway_stable2.png
http://www.labprepare.tu-berlin.de/wiki/lib/exe/detail.php?id=ws2122%3Agame_of_light&media=ws2122:conway_glider.png
https://www.youtube.com/watch?v=xP5-iIeKXE8&list=LL&index=17
https://www.youtube.com/watch?v=C2vgICfQawE&t=187s

Last update:

2022/04/10 20:25 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649615121

Arbeitsablauf

Anfangsiiberlegungen

Zellform: Wir hatten kurz mit dem Gedanken gespielt, die Felder achteckig zu gestalten, da man dort
aber zwangslaufig Zwischenraume hat, die Uberbrickt werden mussen, sind wir doch zu den Ublichen
Quadraten zurickgekehrt.

lebendig/tot darstellen: Die Urspriingliche Idee war ein Flippdot-Display selbst zu bauen, das
schien in der Planung aber zu groller Aufwand zu werden und auch zu fragil fur die Nutzung durch
Personen, die sich nicht genau damit auskennen, daher haben wir uns dazu entschieden, den
Lebensstatus der Zellen Uber eine LED sichtbar zu machen. Eine leuchtende Zelle symbolisiert also
eine lebendige Zelle, eine nicht leuchtende eine tote.

Welcher Sensor?: Um die Interaktivitat zu gewahrleisten, also direkt am Feld verschiedene
Anfangsbedingungen einstellen zu konnen, brauchen wir eine Art Knopf. Ein simpler Druckknopf in
jeder Zelle schien uns zu unhandlich, gerade bei groReren Feldern, deswegen haben wir uns
letztendlich fur eine Losung mit einer Hall-Sonde (Magnetsensor) in jeder Zelle entschieden, sodass
man den Lebensstatus der Zelle durch Berihrung mit einem ,Zauberstab” (fancy Stab mit Magnet an
der Spitze) geandert werden kann. Weitere Ideen, die wir vor allem auf Grund der Storanfalligkeit
durch auBere Einflisse verworfen haben, waren ein Kapazitatsberihrungssensor und weiter
BerUhrungssensoren, die Uber die Erschutterung einer kleinen Feder ausgelést werden.

Zelldesign

Jede Zelle besteht aus einem 3D-gedruckten Zellkérper ,
der so gestaltet ist, dass man die Zellen einfach
ineinander schieben kann und somit ein solides Feld
erhalt. darin mussen die Hall-Sonde, eine LED, ein
Arduino Nano und einiges an Kabeln Platz finden,
deswegen haben wir die Zellkdrper 7cm tief gedruckt.
Die LED und die Hall-Sonde werden im ebenfalls 3D-
gedruckten Deckel befestigt (s. Bild rechts), damit das
Licht von auBen gut sichtbar ist und alle Zellen
einheitlich leuchten und ebenso einheitlich auf den
Magneten reagieren. AuBerdem gibt es Aussparungen
fur die Steckverbindungen der Kabel, die die
Kommunikation der Zellen ermdéglicht, im Deckel, sodass
diese gut sichtbar sind und auch im
zusammengesteckten Zustand leicht geandert werden
kénnen. Dies hat sowohl den praktischen Grund, dass es
wohl die einfachst mégliche Losung der Kommunikation
ist, als auch padagogische, denn so kann man im
laufenden Betrieb eine Verbindung unterbrechen und
darUber demonstrieren, wie die Zellen einander ,.sehen”.
Abgedeckt ist die 3d-gedruckte
Deckelrahmenkonstruktion mit milchigem Acrylglas, das
mit dem Laser-Cutter geschnitten wurde. Die Rlckseite ist mit einem ebenfalls 3D-gedruckten Deckel
verschlossen, in dem Aussparungen fur die Stromverbindung (und Taktgebung) sind.

Die 3D-gedruckten Teile wurden mit einem SLA-Drucker gedruckt, da dieser an sich genauer drucken

e Hefifion

i R AT A

P AR dingen
Zellkarper,

i

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 3/9 Hintergrund

kann als ein FDM-Drucker. Dadurch, dass die Teile nach dem Drucken aber gehartet werden mussen,
besteht bei unseren recht dinnen Wanden eine Neigung zum Neigen. Deswegen drucken wir die Teile
doch lieber mit einem FDM-Drucker.

Software

Jede Zelle tragt das gleiche kleine Programm in sich, dass im Prinzip nur die Anzahl der lebendigen
Nachbarn zahlen und danach entscheiden muss, wie ihr Lebensstatus sein soll. Das grote Problem
hierbei ist die Taktung, denn alle Zellen mussen zunachst den Status ihrer Nachbarn auslesen, bevor
sie ihren eigenen andern, ansonsten wirde es zu Fehlern kommen. Recht leicht I6sbar ware diese
Herausforderung, wenn man alle benachbarten Zellen mit jeweils zwei Kabeln verbinden wirde. Dann
wurde an einem Zelle A ihren Lebensstatus schreiben, was Zelle B lesen kénnte und an dem anderen
umgekehrt. Das kann allerdings schnell zu einem riesigen Kabelsalat fuhren und die Anzahl der Pins
an den Nanos wurde nicht reichen, daher wollten wir eine Ldsung, in der zwischen zwei benachbarten
Zellen immer nur ein Kabel verlauft. Dafur durfen zwei benachbarte Zellen nicht versuchen,
gleichzeitig ihren Lebensstatus Uber das gleiche Kabel zu vermitteln.

Unsere erste Idee war, die Zellen im Schachbrettmuster auslesen zu lassen, also in zwei Gruppen
(angeordnet wie schwarze und weilRe Felder auf einem Schachbrett), in denen sich die Zellen mit
lesen und schreiben abwechseln. Allerdings lesen sich die diagonal zueinander liegenden Zellen so
immer noch gleichzeitig aus, mit diesem Ansatz funktioniert es also nicht.

Die zweite und auch verwendete Idee ist, die Arduinos in acht Schritten in einer Art ,,Uhr” ihre
Nachbarn auslesen zu lassen. Dafir lesen zuerst alle Arduinos den Nachbarn aus, der Uber ihnen
angeordnet ist und schreiben dann logischerweise auf den passenden Nachbarn, also den, der unter
ihnen angeordnet ist. Dann geht es im Uhrzeigersinn weiter: als nachstes wird rechts oben gelesen
und links unten geschrieben und so weiter, bis die Uhr einmal herum ist und alle acht Nachbarn
ausgelesen und beschrieben wurden. Fur diese Umsetzung ist eine zentrale Taktung notwendig, damit
wirklich alle Zellen genau gleichzeitig das gleiche tun. Dafur kam die Idee auf, einen zentralen
Taktgeber-Arduino zu verwenden, der Uber die analog-Pins die verschiedenen Schritte Uber
unterschiedlich hohe Spannung angeben sollte. Das erwies sich in der Umsetzung als komplizierter als
gedacht und auch als komplizierter als nétig. Es reicht namlich véllig, einen Taktgeber zu haben, der
die ganze Zeit Impulse an alle Zellen-Arduinos schickt und diese dann zahlen zu lassen.

Mochte man mit dem Magneten den Lebensstatus der Zellen andern, also eine neue
Startkonfiguration setzen, so muss dieser Prozess unterbrochen werden. Dafur gibt es einen
einfachen Kippschalter, der entweder auf ,automatik” (das Programm lauft wie oben beschrieben
durch) oder auf ,manuell“ geschaltet sein kann. Schaltet man auf manuell um, so wird der aktuelle
Taktungsdurchlauf noch abgeschlossen, danach sendet der Taktgeber aber keine weiteren Signale
mehr. In diesem Zustand kann man nun mit dem Magneten den Lebensstatus der Zellen verandern.
In dem manuellen Modus kann man auBerdem Uber einen Druckknopf einzeln die Generationen
durchgehen, was nltzlich zum erklaren der grundsatzlichen Regeln ist.

Der Code der Zellen besteht also grob aus folgenden Abschnitten:

1. Mdglichkeit, mit Magnet den Status zu andern
2. Nachbarn zahlen (nach ,,Uhr*)
3. je nach Anzahl der Nachbarn Uber eigenen Lebensstatus entscheiden

Fur Details und Code des Taktgebers siehe den ordentlich auskommentierten Code.

Tipp: Speist man mehreren verbundenen Arduinos nur Uber eine Verbindung zum Laptop, so kann es
passieren, dass die Stromstarke zu gering ist und merkwurdiges, unerklarliches Verhalten entsteht,

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code
https://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light#code

Last update: .) . . - . ; . _
2022/04/10 20:25 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649615121

also die Stromversorgung besser Uber ein Netzteil regeln.

Ergebnis

Die fertige Zelle sieht am Ende wie folgt aus:

Im Idealfall sollten deutlich kurzere Kabel verwendet werden, die dann an den Arduino gelotet
werden, damit die Zellkorper nicht so vollgestopft werden. Darauf haben wir bis jetzt allerdings
verzichtet, damit alle Materialien wiederverwendet werden kdnnen. Ein
komplettes 3x3 Feld konnten wir noch nicht testen, da daftr noch
Materialien fehlen, aber ein Test auf einem Steckbrett hat gezeigt, dass

alles grundsatzlich funktioniert, wie es soll.

Materialien

Algemein benétigte Materialien:
Beliebiger Arduino (auch fur Stromversorgung verantwortlich)|1
Kippschalter
Druckknopf
Benotigte Materialien pro Zelle:
Arduino nano 1
LEDs
Halleffekt-Sensoren
Kabel:
male-male (Kommunikation) 4
Kommunikations anschlusse (x-female)|8
Kabel fur interne Elektronik 3 (Hallsonde) + 2 (LED)
2
1

[y

(ein 3x3 Feld braucht insgesammt nur 27)

Strom Kabel
Takt Kabel

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 5/9 Hintergrund

Code

Jeder Arduino nano, der in eine Zelle verbaut ist, bendtigt folgenden Code:

CellGenome.ino

#define LED 11 //LED/STATUS pin dieser Zelle.
Gesteuert durch interne Logik

#define sensorPIN A4 //pin zur Senor-Auswerung

#define sensorVALUE analogRead(A4) //sensor wert

#define stepPIN A5 //pin zur koordinierung. Gesteuert

durch externe Logik

#define readPIN (stepSTATE+3)%8+2 //formel zur berechnung der Pins,
an denen die Nachbarzellen gelesen werden
#define writePIN stepSTATE+1 //formel zur berechnung der Pins,
an denen Nachbarzelen angeschrieben werden

#define stepINPUT digitalRead(A5)

int stepSTATE = 0O; //extern angegebener Counter fur
den Lese/Schreibe Zyklus

boolean stepTOGGLE = false; //toggle fir den stepSTATE

int jobSTATE = 0; //interner counter fiir den

Lese/Schreibe Zyklus

boolean liveSTATE = false; //"Lebens"status dieser Zelle
int 1iveNEIGHBOUR = 0; //Anzahl der "Lebenden" Nachbar
Zellen

const int threshold = 450; //Grenzwert ab dem der Sensor
anschlagen soll

boolean sensorTOGGLE = false; //"sensor zustand"

void setup() |
//Serial.begin(9600);

pinMode (LED, OUTPUT) ; //LED Pin

pinMode(sensorPIN, INPUT); //Pin wo die hall-sonde ausgelesen
wird

pinMode (stepPIN, INPUT); //Pin wo durch der Lese/schreibe

Zyklus reinkommt
pinMode (12, OUTPUT) ;
pinMode (12, LOW);

}

void loop() {
digitalWrite(LED, 1iveSTATE) ; //Die LED
spiegelt den Lebensstatus der Zelle wieder

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=0

Last update:

2022/04/10 20:25 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649615121

17(stepTOGGLE == false && stepINPUT == true) //wurde
bis jetzt noch kein genarationsimpuls regestriert, geht aber grad einer
ein
stepTOGGLE = true; //wird
vermerkt das ein impuls eingeht
stepSTATE += 1; //und
eine Generation hochgegangen
}
17(stepTOGGLE == true && stepINPUT == false) //1st
vermerkt das ein Impuls registriert wurde, liegt aber keiner an
stepTOGGLE = false; //wird
dies vermerkt
}
1T (stepSTATE == 0){ //geht die

Zelle nicht die genarationen durch, kann mit dem magneten der status
geandert werden:

iT (sensorVALUE <= threshold && sensorTOGGLE == false){ //Ist der
Magnet nah genug dran und wars bis jetzt aber noch nicht

sensorTOGGLE = true; //wird
vermerkt das der Magnet nah genug dran ist
1liveSTATE = !1iveSTATE; //der

Lebenstatus geandert
Serial.println(sensorVALUE) ;

}
1T (sensorVALUE > threshold){ //ist der
Magnet wieder weiter weg
sensorTOGGLE = false; //wird
vermerkt das grad kein Magnet da ist
}

}

17 (stepSTATE > 0 && stepSTATE < 9 &4 jobSTATE == stepSTATE - 1){
//werden die schritte durchgegangen:
1T (stepSTATE == 1)1{
//wird erst gecheckt ob dies der erste schritt ist
1iveNEIGHBOUR = 0;
//ist dies der fall wird der Nachbar counter auf null gesetzt
}
pinMode (writePIN, OUTPUT) ;
//es wird der Erste pin in der folge als out-put definiert
digitalWrite(writePIN, 1iveSTATE) ;
//und dariber der lebensstatus an den entsprechenden Nachbarn
vermittelt
pinMode (readPIN, OUTPUT) ;
digitalWrite(readPIN,6 LOW) ;
//der entsprechend gegenlberliegende pin wird resetet,
pinMode (readPIN, INPUT) ;
//als input definiert

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 7/9 Hintergrund

1liveNEIGHBOUR += digitalRead(readPIN);
//und sofern dort eine lebende nachbarzelle entdeckt wird, wird dies
vermerkt
JObSTATE++;
//es wird vermerkt das der erste schritt fertig ist
Serial.print(1liveNEIGHBOUR) ;
Serial.print(" Nachbarnzahl, die nach dem pin ");
Serial.print(readPIN);
Serial.println(" gelesen wurde");

}
else if (stepSTATE ==9 && jobSTATE == stepSTATE - 1) //wenn
angefordert und fertig mit Job 2 werden die Regeln angewendet:
it (liveSTATE == false && 1iveNEIGHBOUR == 3){ //tote
Zelle mit genau drei Lebenden Nachbarn
1iveSTATE = true; //wird
lebendig
}
else 17T (liveSTATE == true && 1iveNEIGHBOUR < 2){ //Lebende
Zelle mit weniger als zwei Lebenden Nachbarn
1iveSTATE = false; //Stirbt
}
else 1f (liveSTATE == true && 1iveNEIGHBOUR = 3){ //Lebende
Zelle mit mehr als 3 Lebenden Nachbarn
liveSTATE = false; //Stirbt
}
Serial .println();
Serial.print("Gesammt zahl lebender Nachbarn:");
Serial .println(liveNEIGHBOUR) ;
Serial.println();
jObSTATE = 0; //Fertig
mit allen Jobs,
stepSTATE = 0; //wartet
auf erste Aufgabe
}

Der Taktgebende Arduino wird mit folgendem Code bespielt:

controllpanell.ino

#define button 8 //Der druckknopf
flur's schritweise fortschreiten der Genarationen wird an diesen Pin
angeschlossen

#define Switch 7 //Der Kippschalter,

mit dem zwischen "Manuell" und "Automatisch" gewechselt werden kann,
wird an diesen Pin angeschlossenangeschlossen
#define PulseOut A5 //0utput Pin fiur die

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/doku.php?do=export_code&id=ws2122:game_of_light&codeblock=1

Last update:

2022/04/10 20:25 ws2122:game_of light http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649615121

Pulse

#define Delay 5 //verzégerung zwischen
den einzelnen Pulsen (ein Genarationswechsel braucht 16*Delay
millisekunden)

boolean stepTOGGLE = false //toggle mit dem ein

Knopfdruck eine funktion bloB einmal ausfihrt, bis der knopf das
nachste mal gedrickt wird

void setup
Serial.begin (9600
pinMode (PulseOut, OUTPUT
pinMode (button, INPUT
pinMode (7, INPUT

void loop
if(digitalRead (Switch true //wenn der Schalter
umgelegt ist
for (int i 1; 1 9; i //wird acht mal

digitalWrite(PulseOut, 6 HIGH //der Takt pin an,
delay(Delay //nach kurzem Delay
digitalWrite(PulseOut, LOW //aus geschaltet.
delay(Delay //dies wird nach

kurzem delay wiederholt

else //ist der schalter
nicht umgelegt
17 (stepTOGGLE false button true //wird nach der selben

Logik wie im code "CellGenome" getestet ob gerade ein Signal
eingegangen ist (der knopf gedrickt wurde)

stepTOGGLE = true

for (int 1 11 9, 1 //und 8 impulse mit
entsprechender lange und entsprechenden Pausen abgegeben.

Serial . println(i

digitalWrite(PulseOut,6 HIGH

delay(Delay

digitalWrite(PulseOut, LOW

delay(Delay

17 (stepTOGGLE true button false
stepTOGGLE false

http://www.labprepare.tu-berlin.de/wiki/ Printed on 2026/01/29 04:47

2026/01/29 04:47 9/9 Hintergrund

Verbesserungsideen

e Kabel anders ldsen (groler Kabelsalat)
e nicht jede Zelle mit einem Nano, sondern eigenen Chips designen
e Taktung eleganter l6sen (z.B. mit interrupt-Funktion der Nanos)

From:
http://www.labprepare.tu-berlin.de/wiki/ - Project Sci.Com Wiki

Permanent link: —
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of light&rev=1649615121 -"':

Last update: 2022/04/10 20:25

Project Sci.Com Wiki - http://www.labprepare.tu-berlin.de/wiki/

http://www.labprepare.tu-berlin.de/wiki/
http://www.labprepare.tu-berlin.de/wiki/doku.php?id=ws2122:game_of_light&rev=1649615121

	[Hintergrund]
	[Hintergrund]
	Hintergrund
	Vision
	Ziele
	Arbeitsablauf
	Anfangsüberlegungen
	Zelldesign
	Software

	Ergebnis
	Materialien
	Code
	Verbesserungsideen

